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CHAPTER 1 :- FUNDAMENTAL OF CONTROL SYSTEM

Control system engineering is the branch of engineering which deals with the
principles of control theory to design a system which gives desired behaviour in a controlled
manner. Hence, this is interdisciplinary. Control system engineers analyze, design, and
optimize complex systems which consist of highly integrated coordination of mechanical,
electrical, chemical, metallurgical, electronic or pneumatic elements. Thus control
engineering deals with diverse range of dynamic systems which include human and
technological interfacing.

Input; stimulus Output: response
- Control i -

Desired response system Actual response

Control system engineering focuses on analysis and design of systems to improve
the speed of response, accuracy and stability of system. The two methods of control system
include classical methods and modern methods. The mathematical model of system is set up
as first step followed by analysis, designing and testing. Necessary conditions for the stability
are checked and finally optimization follows.

In classical method, mathematical modelling is usually done in time domain, frequency
domain or complex s domain. Step response of a system is mathematically modelled in time
domain differential analysis to find its settling time, % overshoot etc. Laplace transforms are
most commonly used in frequency domain to find the open loop gain, phase margin, band
width etc of system. Concept of transfer function, sampling of data, poles and zeros, system
delays all comes under the classical control engineering stream.

Modern control engineering deals with Multiple Input Multiple Output (MIMO)
systems, State space approach, Eigen values and vectors etc. Instead of transforming complex
ordinary differential equations, modern approach converts higher order equations to first order
differential equations and solved by vector method.

Automatic control systems are most commonly used as it does not involve manual
control. The controlled variable is measured and compared with a specified value to obtain the
desired result. As a result of automated systems for control purposes, the cost of energy or
power as well as the cost of process will be reduced increasing its quality and productivity.

Before | introduce you the theory of control system it is very essential to know the
various types of control systems. Now there are various types of systems, we are going to
discuss only those types of systems that will help us to understand the theory of control system
and detail description of these types of system are given below:



Linear Control Systems

In order to understand the linear control system, we should know the principle of
superposition. The principle of superposition theorem includes two the important properties and

they are explained below:

Homogeneity: A system is said to be homogeneous, if we multiply input with some constant ‘A’
then output will also be multiplied by the same value of constant (i.e. A).

Additivity: Suppose we have a system ‘S’ and we are giving the input to this system as ‘a,’ for
the first time and we are getting output as ‘b, corresponding to input ‘a,’. On second time we
are giving input ‘a;’ and correspond to this we are getting output as ‘b,’. Now suppose this time
we giving input as summation of the previous inputs ( i.e. a; + a,) and corresponding to this
input suppose we are getting output as (b, + b,) then we can say that system ‘S’ is following the
property of additivity. Now we are able to define the linear control systems as those types of
control systems which follow the principle of homogeneity and additivity.

Examples of Linear Control System

Consider a purely resistive network with a constant dc source. This circuit follows the principle
of homogeneity and additivity. All the undesired effects are neglected and assuming ideal
behaviour of each element in the network, we say that we will get linear voltage and current
characteristic. This is the example of linear control system.

Non-linear Systems

We can simply define non linear control system as all those system which do not follow the
principle of homogeneity. In practical life all the systems are non-linear system.

Examples of Non-linear System

A well known example of non-linear system is magnetization curve or no load curve of a dc
machine. We will discuss briefly no load curve of dc machines here: No load curve gives us the
relationship between the air gap flux and the field winding mmf. It is very clear from the curve
given below that in the beginning there is a linear relationship between winding mmf and the air
gap flux but after this, saturation has come which shows the non linear behavior of the curve
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or characteristics of the non linear control system.
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In recent years, control systems plays main role in the development and advancement
of modern technology and civilization. Practically every aspects of our day-to-day life is
affected less or more by some control system. A bathroom toilet tank, a refrigerator, an air
conditioner, a geezer, an automatic iron, an automobile all are control system. These systems
are also used in industrial process for more output. We find control system in quality control of
products, weapons system, transportation systems, power system, space technology, robotics
and many

Requirement Of Good Control System

Accuracy: Accuracy is the measurement tolerance of the instrument and defines the limits of the
errors made when the instrument is used in normal operating conditions. Accuracy can be
improved by using feedback elements. To increase accuracy of any control system error
detector should be present in control system.

Sensitivity: The parameters of control system are always changing with change in surrounding
conditions, internal disturbance or any other parameters. This change can be expressed in
terms of sensitivity. Any control system should be insensitive to such parameters but sensitive
to input signals only.

Noise: An undesired input signal is known as noise. A good control system should be able to
reduce the noise effect for better performance.

Stability: It is an important characteristic of control system. For the bounded input signal, the
output must be bounded and if input is zero then output must be zero then such a control
system is said to be stable system.

Bandwidth: An operating frequency range decides the bandwidth of control system.
Bandwidth should be large as possible for frequency response of good control system.

Speed: It is the time taken by control system to achieve its stable output. A good control
system possesses high speed. The transient period for such system is very small.



Oscillation: A small numbers of oscillation or constant oscillation of output tend to system to
be stable.

Types Of Control Systems
There are two main types of control system. They are as follow

Open loop control system
Closed loop control system

Open Loop Control System

A control system in which the control action is totally independent of output of the system then
it is called open loop control system. Open loop system is also called as Manual control
system. Fig — 1 shows the block diagram of open loop control system in which process output
is totally independent of controller action.

Desired Process Controller
Response Output Process Qutput
¢ > Controller [ > Process [ >
Process
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Practical Examples Of Open Loop Control System

Electric Hand Drier — Hot air (output) comes out as long as you keep your hand under the
machine, irrespective of how much your hand is dried.

Automatic Washing Machine — This machine runs according to the pre-set time irrespective
of washing is completed or not.

Bread Toaster — This machine runs as per adjusted time irrespective of toasting is completed
or not.

Automatic Tea/Coffee Maker — These machines also function for pre adjusted time only.
Timer Based Clothes Drier — This machine dries wet clothes for pre — adjusted time, it does
not matter how much the clothes are dried.

Light Switch — lamps glow whenever light switch is on irrespective of light is required or not.

. Volume on Stereo System — Volume is adjusted manually irrespective of output volume level.

. Advantages Of Open Loop Control System

Simple in construction and design.
. Economical. Easy to maintain.
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Closed Loop Control System

Control system in which the output has an effect on the input quantity in such a manner that
the input quantity will adjust itself based on the output generated is called closed loop control
system. Open loop control system can be converted in to closed loop control system by
providing a feedback. This feedback automatically makes the suitable changes in the output
due to external disturbance. In this way closed loop control system is called automatic control
system. Figure below shows the block diagram of closed loop control system in which
feedback is taken from output and fed in to input.
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Practical Examples Of Closed Loop Control System

Automatic Electric Iron — Heating elements are controlled by output temperature of the iron.
Servo Voltage Stabilizer — Voltage controller operates depending upon outputvoltage of the
system.

Water Level Controller— Input water is controlled by water level of the reservoir.

Missile Launched & Auto Tracked by Radar — The direction of missile is controlled by
comparing the target and position of the missile.

An Air Conditioner — An air conditioner functions depending upon the temperature of the
room.

Cooling System in Car — It operates depending upon the temperature which it controls.

Advantages OF Closed Loop Control System

Closed loop control systems are more accurate even in the presence of non-linearity.
Highly accurate as any error arising is corrected due to presence of feedback signal.
Bandwidth range is large.

Facilitates automation.

The sensitivity of system may be made small to make system more stable.

This system is less affected by noise.


http://www.electrical4u.com/voltage-or-electric-potential-difference/�

10.
11.
12.

Disadvantages Of Closed Loop Control System

They are costlier.

They are complicated to design.

Required more maintenance.

Feedback leads to oscillatory response.

Overall gain is reduced due to presence of feedback.

Stability is the major problem and more care is needed to design a stable closed loop system.

Comparison of Closed Loop And Open Loop Control System

OPEN LOOP CONTROL SYSTEM CLOSED LOOP CONTROL SYSTEM

The feedback element is absent. The feedback element is always present.
An error detector is not present. An error detector is always present

It is stable one. It may become unstable.

Easy to construct. Complicated construction.

It is an economical. It is costly.

Having small bandwidth. Having large bandwidth

It is inaccurate. It is accurate.

Examples: Hand drier, tea Maker Examples:Servo voltage stabilizer,

Feedback Loop Of Control System

A feedback is a common and powerful tool when designing a control system. Feedback
loop is the tool which take the system output into consideration and enables the system to
adjust its performance to meet a desired result of system.

In any control system, output is affected due to change in environmental condition or
any kind of disturbance. So one signal is taken from output and is fed back to the input. This
signal is compared with reference input and then error signal is generated. This error signal is
applied to controller and output is corrected. Such a system is called feedback system. Figure
below shows the block diagram of feedback system.
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When feedback signal is positive then system called positive feedback system. For
positive feedback system, the error signal is the addition of reference input signal and feedback
signal. When feedback signal is negative then system is called negative feedback system. For
negative feedback system, the error signal is given by difference of reference input signal and
feedback signal.

Effect Of Feedback

Refer figure beside, which represents feedback system where
R = Input signal

E = Error signal

G = forward path gain

H = Feedback C = Output signal B=Feedback signal

et e

B(+ or )

Block Diagram

1. Error between system input and system output is reduced.
2. System gain is reduced by a factor 1/(1+GH).
3 Improvement in sensitivity.

4, Stability may be affected.
5. Improve the speed of response.

Standard Input Test Signals : These are also known as test input signals. The input signal is
very complex in nature, it is complex because it may be a combination of various other signals.
Thus it is very difficult to analyze characteristic performance of any system by applying these
signals. So we use test signals or standard input signals which are very easy to deal with. We
can easily analyze the characteristic performance of any system more easily as compared to
non standard input signals. Now there are various types of standard input signals and they are
written below:

Unit Impulse Signal : In the time domain it is represented by d(t). The Laplace
transformation of unit impulse function is 1 and the corresponding waveform associated with the
unit impulse function is shown below.
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Unit Step Signal : In the time domain it is represented by u (t). The Laplace transformation of
unit step function is 1/s and the corresponding waveform associated with the unit step function
is shown below.

4 u(t)

0 t

Unit Ramp signal : In the time domain it is represented by r (t). The Laplace transformation of
unit ramp function is 1/s* and the corresponding waveform associated with the unit ramp
function is shown below.

fr(t)

Unit Ramp Signal
Parabolic Type Signal : In the time domain it is represented by t?/ 2. The Laplace
transformation of parabolic type of the function is 1 / s* and the corresponding
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waveform associated with the parabolic type of the function is shown below.
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CHAPTER 2

TRANSFER FUNCTION

TRANSFER FUNCTION

For any control system there exists a reference input termed as excitation or cause
which operates through a transfer operation termed as transfer function and produces an
effect resulting in controlled output or response. Thus the cause and effect relationship between
the output and input is related to each other through a transfer function.

Input fexcitation function (r) Output /response (c)

[ > Transfer functiong | >

Therefore, Transfer Function(TF) g = ¢

r

It is not necessary that the output will be of same category as that of the input. For
example — in case of an electrical motor, the input is an electrical quantity and output is a
mechanical one. In control system all mathematical functions are converted to their
corresponding Laplace transforms. So the transfer function is expressed as a ratio of Laplace
transform of output function to Laplace transform of input function.

Input R(s) QutputC(s)

G(s)

The transfer function can be expressed as

G(s) = &l

Ris)

While doing Laplace transform, while determining transfer function we assume all initial
conditions to be zero.

- : Lelt)
Hence, transfer function G(s) = 1
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The transfer function of a control system is defined as the ration of the Laplace
transform of the output variable to Laplace transform of the input variable assuming all
initial conditions to be zero.

Procedure for determining the transfer function of a control system are as
follows :

1. First deduce the equations for the system

2. Now take Laplace transform of the system equations, assuming initial conditions as zero.
3. Specify system output and input

4. Lastly take the ratio of the Laplace transform of the output and the Laplace transform of the
input which is the required transfer function

Methods of obtaining a Transfer function: There are major two ways of obtaining a transfer
function for the control system .The ways are —

» Block diagram method : It is not convenient to derive a complete transfer function for a
complex control system. Therefore the transfer function of each element of a control system is
represented by a block diagram. Block diagram reduction techniques are applied to obtain the
desired transfer function.

Signal Flow graphs: Signal Flow Graph is a modified form of a block diagram which gives a
pictorial representation of a control system . Signal flow graph further shortens the
representation of a control system.

The transfer function of a system is completely specified in terms of its poles and zeroes and
the gain factor. Let us know about the poles and zeroes of a transfer function in brief.
sl

G(s) = mr = K (system gain)

Where, K = system gain,

Z1 3 Z0 ) e Z» = zero’'s of the transfer function
R o p. = pole’s of the transfer function

Putting the denominator of equation (i) equal to zero we get the poles value of the transfer
function. For this the T.F is infinity.

Putting the numerator of equation (ii) equal to zero we get the value of zero of the transfer
function. For this T.F is equal to zero.

There are two types of transfer functions :-
i) Open loop transfer function( O.L.T.F) : Transfer function of the system without feedback path
or loop.



i) Closed loop transfer function (C.L.T.F) : Transfer function of the system with feedback path
or loop.

EXAMPLE 4.1. Find the transfer function of the given network . ﬁiﬁ L
Solution : Step 1: Apply KVL in mesh (1) s
i - L
v, = Ri+L 8 LJ113) Vi o af) Vy
' dt ol
Apply KVL in mesh (2} : P . — . L=d
FPY di Ingprst Chl!.pl;t
Vo=Lg wof1.14) Fig. 1.9.

Step 2 : Take Laplace transform of equations (1.13) and (1.14) with assumption that all initial
conditions are zaro.

Viis) = RIis) + sLIs) {1.15)
 Vyls) =sLI(s) JL16)
Step 3 : Calculation of transfer function

(s sLI(s)
Vils) " (R+sL)I(s)
Vals) &L
1-':[5} - m ||'|I:j.r1:;r]
Equation 1.17 is the required transfer function.
EXAMPLE 1.2. Determine the transfer function of the electrical network shown in Fig. 1.10.

Solution : Step 1: Apply KVL in both meshes B L
l:ln—u\..-"W'-—"T'.!T"‘.—.E._._.-_q.

.ol 1,
E; = Ri+L—+= |idt (L1} , -
dif  C j E. t-}_ C _L“';"' EI]
E, =% idt -(1.19) P | -
fig. 1.10.
Step 2 : Take Laplace transform of equations (1.18) and (1.19) _
1 1
Efs) = Ri(s) + sLI (5] + l,:31'[,';] = I{ﬂ[R+5L+E]
1
Efs) = IM[M] (1.20)
Cs
) = éi{s} {121)
Step 3 : Determination of transfer function
Eyls) _ Its) G
E(s) ~ Cs ]'{5}[531.:-+5RC+‘1]
Ey(s) 1

E(s) ~ FLC+SRC+1 Ane A1.22)
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EXAMPLE 1.3. Obtain the transfer fanction virg forFig. 111,
1 1 ;
: i €
Solution : Step 1: KCL at node 9 : | }
P =iy 41, (1.23) i o P L
¥ -V ? 4 ."'"'| fy
L =_]}-l‘£ ¥

: d
P CE (Vy-¥2)
S Fig. 1.11.
I = 13 -E
Fut all these values in equaton (1.23)

V., W=V
El —ai +r:3- V-V «(1.24)

Step 2: Take Laplace transform afequahm{l 24)

V
;{;} Rj‘-r’n:s} R Vals) + Cs V,(s) — Cs Vi)

_il_ N 2{5}.,.(:31..?1{5}: F{S}+C§vf5:|'
F;ij[—Rgl-+Rlz+G_ = 1'3(5‘[31:""“:""]

Step 3 : Determination of transfer function

ms)["“—*ﬂétg—i‘l’—‘ﬂ_ - ﬂsﬁ[%ﬁ]

Vi (z) Ry + ByRyCs
1*’?{5} Ry+Fy+ BB, Cs  AnS. {125

EXAMPLE 1.4. Find the transfer function of lag network shown in Fig. 1,12
Solution : Step 1: Apply KVL in both meshes

eff) = Ryi) + Rilt) + %J’:‘u Vo (126)

eft) = Raf (i) + %_[r'(tj dt w(L27)
Step 2 : Laplace transform of equation (1.26) and (1.27) o 4‘*;:’“ =
Efs) = [Rl + Ry +é]f{s) &) ‘Lf ) % & £t}

u[ﬁ} . [Rl . :|”.3:| e it i F:l.-..i s
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Step 3 : Calculation of transfer function

Ry + L i)
Fale) = [5[& 14:E5C51+1 ];r;s}

Efs) _ 1+RCs
Efs) - 1+RCs+RyCs
Equation (1.28) is the required transfer function.
EXAMPLE 1.5. Determine the transter function of Fig, 1.13.

':; : L"!EC-| :
- !
o a— .i.. FW"'—::—-"—--——--;! [ | - : ——!T e el
Rl 1‘! ) m _EE LA ! |r
By Zy i Ry i
i) _r} Ealth gt} T . i &)
t --‘- C L] ]_s_gl
Tr=: . O Mo
Fig- 1.12. Fig. 1.14,

Solution : Step 1: calculation of Z; :

= 1
Z = Rdsc‘ =l
1_R 1 = Efs+1
1t =
50
Step 2 : Calculation of Z,:
1 BG5S+l

I O

Step 3 : Calculation of transfer function in terms of £, and £,

Es(s) __ Zsls)
Efs) — Zy(s)+Z;(s)

-{1.28)

129

. {1.30)

F
{131

Step 4: Calculation of transfer function in terms of K, R,.C, and C;. Put the values of Z, (s) and %{?:}l

from equations (1.29) & 1.30 in equation (1.31)

El) __ (L+RGS)S

E(s) ~ B RGSl
GRS+ 5G

Eals) _ (1+R,CSN1+RiCS)

Ei(s)  (1+RCSN1+R.C5)+ BiC,S

The above equation is the required transfer function of the given :.':i:mir..

{132



Chapter3

CONTROL SYSTEM COMPONENTS
&
MATHAMATICAL MODELING OF PHYSICAL SYSTEM

In a control system, the devices which are used to convert the process variables in one
form to another form is known as Transducer. Transducer can also be defined as a device
which transforms the energy from one form to another. For example a thermocouple
converts the heat energy to electrical voltage. In control system the following devices are
used as a transducer

Potentiometer

DC Servomotor

AC servomotor
Synchros

Stepper Motor
Magnetic Amplifier
Tachogenerator
Gyroscope

Differential Transformer

RN REWNERE

Potentiometer - A Potentiometer is a simple device which is used for mechanical
displacement either linear or angular. Thus a Potentiometer is electro mechanical transducer
which converts the mechanical energy to electrical energy. The input to the device is in the
form of linear mechanical displacement or rotational mechanical displacement. When the
voltage is applied across the fixed terminal. The output voltage is proportional to the
displacement. Let Ei=Input voltage Eo=Output voltage




x; = displacement from zero position
x; = total length of translational potentiometer
K = total resistance of potentiometer
" Under ideal condition the output voltage E, is glven by

x;
E, = ?JEr (9.1}
Equation (9.1} shows a linear relationship shown in Fig. 9.2,
o
o
xfr,—>
Fig. 9.1. Fig. 9.2
Similarly for rotational motion, the output voltage E; is given by
Eqy= Er'g’“ {82
;

where 8 = input angular displacement (degree or radians)

B, = total travel of wiper (degree or radians)
Figure ELE(::} Shows an arrangement of error sensing transducer. In this arrangement l:'-:"q:

potentiometers are connected in parallel. The output voltage taken across the variable teru‘u.nalﬁ-.ll
of the two potentiometer. The output voltage Ej is given by

E, = K{8, -8, (9.3)
E; is the voltage HPPﬁEda 8, and 8, are the angular displacement of the wiper,

K is constant and is known as sensitivity. The block diagram is shown in Fig. 9.3 (b).

%_é i B -
= Ey
| § 3 :
{a) (k)

9.3. SERVOMOTORS

Servomotors are used in feedback control systems. Servomaotors have low rotor inertia and high
speed of response. The servomotors are also know as control motors. The servomotors which are
used in feedback control system should have linear relationship between electrical control signal
and rotor speed, torgie speed characteristic should be linear, the response of the servomator
should be fast and inertia should be low.

i



89.4. TYPES OF SERVOMOTORS

The servomotors are classified as
(i} A.C. servomokors
(if) D.C. servomotors
(ifi) Special servomotors
, DC. servomotors are further classified as armature controlled de, servomotors and field
control d.c. servomotors.

9.4.1. A.C. Servomotors

These motors having two parts namely stator and rotor. A.C. servomators are hwo phase
induction motor. The stator has two distributed windings. These windings are displaced from
each ather by %07 electrical. One winding is called main winding or reference winding, The reference
winding is excited by constant a.c. voltage. The other winding is called controf winding. This
winding is excited by variable control voltage of the same frequency as the reference winding,
but havitig a phase displacement of %0 electrical. The variable contral voltage for control winding
is obtained from a servoamplifier, The direction of rotation depends upon phase relationship of
violtages applied to the two windings. The direction of rotation of the rotor can be reversed by
reversing the phase difference between control voltage and reference voltage.

The rotor of a.¢. servomotors are of two types (a) squirrel cage rotor (b) drag cup type rotor,
The squirrel cage rotor having large length and small diameter, so its resistance s very high. The
alr gap of squirrel cage is kept small, In Control winding
drag cup type there are two airgaps. For
the rotor a cup of non-magnetic Valtage
conducting material is used. A stationary from
iron core is placed between the conducting - servoamplifier
cup o complete the magnetic circult, The *
resistance of drag cup type is high and
therefore having high starting torque,
Generally aluminium is used for cup.
Figure 5.4, Shows the schematic diagram
of two phase a.c. servomotor and Fig.
9.34). and (¥) shows the two types of rotor.

SN

Fig. 8.5 (a) Squirrel cage rotor Fig. 9.5 [(b) Orag cup type rotor



9.4.2. Torque-spead Characteristic

The torque speed characteristic of two phase induction motor depends upon the ratio of
reactance to resistance, For high resistance and low reactance, the characteristic is lincar and for
large ratio of X to R it becomes non-linear as shown in Fig. 9.6(). The torque-speed characteristics
for various control voltages are almost linear as shown in Fig, 9.6(b).

1 V2 V11
X
1 L
B
5 X
E‘ SmaIJE l|-'r]-----
= ,
- 0
Spoed —— Speed —»
fa) ()
Fig. 9.6.

9.4.3. D.C. Servomotors

L.C. servomaotors are separately excited or permanent magnet d.c. servomotors, The armature
of d.¢. servomotor has a large resistance, therefore torque speed characteristic is linear, The torque
speed characteristic shows in Fig, 9.7(b). Fig 9.7(a) shows the schematic diagram of separately
excited d.c. servomotor.

1 Ve Ve W
5
I, R &,
+ OB AAAA T E
Ir . X
0
o * " Speed =3
(n) Sepwerately excited d.o, servomeler () Torgue speed dearcteristic

Fig. 9.7.

The d.c. servomaotors can be controlled from armature side or from feld, In field conteolled
d.¢. servomotors the ratio of L/R is large i, the time constant for field circuit is large. Due to
large time constant, the response is slow and therefore they are not commonly used. Transfer
function of fleld controlled d.c. servomotor is given in Chapter 1. The speed of the motor can be
controlled by adjusting the voltage applied to the armature. In armature controlled d.c. servomotor
the time constant is small and hence the response is fast, The efficiency is better than the field
controlled motor, The transfer function of armature controlled d.c. servornotor is derived in Chapter 1.

9.4.4. Application of Servomotors

Servomotors are widely used in radars, electromechanical actuators, computers, machine
tools, tracking and guidance system, process controllers and robots,




number of stacks or phases, then tooth pitch is given by 360°/T, and angular displacement or
step angle is given by 360°/nTr, For exmaple 12 pole rotor, the pitch is 360/12 = 30 and the step
angle will be 360//3 x 12 = 10° i ¢, rotor poles are displaced from each other by 107,

A i C Stator
* o o o= g
" 49—t "
+ | Bokor w | Bobor Rotor

[S A B } c {;5‘““

[ | F—h L—-ar-—}

e I o T
]r + = Claar

Fig. 8.10. Multi stack variable reluctance stapper motor
8.7. SYNCHROS

# synchro is an electromagnetic transducer which converts the angular position of a shaft into
an electric signal. Synchros are used as detectors and encoders,

9.7.1. Synchro Transmitter

The construction of synchrotransmitter is very similar to that of 2 three phase alternator, The
stator is made of laminated silicon steel and carries three phase il
star connected windings. The rotor is a rotating part, dumbbell
shaped magnet with a single winding,

# single phase a.c. voltage is applied to the rotor through
slip rings. Let applied a.c. voltage to the rotor is

; ¢ = E sin [ --149.7)
due to this applied voltage a magnetizing current will flow in
the rator coil. This magnetizing current produces sinusoidally
varying flux and distributed in the air gap. Because of ransformer
action voltages get induced in all stator coil which is proportional

to cosine of angle between stator and rotor coil axes. ‘ ﬁ
Now, consider the rotor of synchro transmitter is atanangle Fig. 9.11. Schematic diagram
8, then voltages ineach stator coil with respect to neutral are of synchro transmitter
E,, = KE_sin uyf cos --{ 3.8}
Eyy = KE_ son oyt cos (B + 120F) : = f9.9)
E., = KE, sin ay# cos (B + 2407) w{9.10)
Magnitudes of stator terminal voltages are -
En:l:l = E[Tr = 'Ebl'l

= KE_ sin wf [cos (6 + 240°) - cos (8 +120")] = I-:Ersinmﬂr [Jﬁ a‘mH]
Ey = /3 KE, sinayf sin® - : 9,11



Similarly, E,. = J/3 KE, sinwg sin(B+120*) {9.12)
Ey, = 3 KE, sinay# sin(fi+240°) 9.13)
When 8 = 0, the maximum induced voltage will be E_ and E_, will be zero. This position of
the: rotor is defined as electrical zero of the transmitter and is used as the reference for indicating
the angular position of the rotor. |
“Thus, the input to the synchro transmitter is the angular position of the rotor shaft and the
output are the three single phase voltages which are the function of the shaft position.

8.7.2. Synchro Control Transformer

Principle of operation of synchro control transformer is same as that of synchro transmitter,
Rotor of snchro control transformer is cylindrical type. Synchto control transformer is an
electromechanical device, The combination of synchro transmitter and synchro control transformer
is used as an error detector. The funictionrof error detector is to convert the difference of two shaft
positions into an electrical signal. The Fig. 9.12, shows schematic diagram of synchro error detector.

The output of synchro transmitfer is connected to the stator winding of the synchro control
transformer. Therefore the same current will flow in the stator windings of synchro control transformer
but in opposite direction. The voltage acress the rotor terminals of control transformer is

e(f) = K| V. cos ¢ sin ayt [(9.14)
where ¢ = angular displacement between the two rotors. When the two rotors are at an angle
90°, the voltage induced in control trnsformer is zero, This position is known as electrical zero
position control transformer.

Synchro transmitter Synchro contral tranaformer |

. Fig. 9.12. Synchrg error detector
Let the transmitter rotate through an angle ‘8 in the direction indicated and let control transformer
rotor rotates in the same direction through an angle ‘e’ Then

b= (90" -0+ -{9.15)
Fut the value of § in equation 9.14, we get
e(t) = K, V. sin (6 - o) sin a, ¢ S 9.16)

Fromn equation 1.’_9.16) it i clear that when two rotor shafts are notin alignment, the rotor
voltage of control transformer is approximately a sine function of the difference between the two

shaft angles. .
For small angular displacement between two rotor position 3
elf) = K; V, (8 - o) sinuy! il (9.17)
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Block Diagram & Signal Flow Graphs(SFG)




BLOCK-DIAGRAM REDUCTION
10.1 INTRODUCTION

Block Diagram: Pictorial representation of functions performed by each component of a

system and that of flow of signals.

- ™
C (s
R(S) - G(s) ()
Input L\ / Output
Signals
k (Only in indicated direction) C(s)=G(s)R (S))
Figure Single block diagram representation.
Components for Linear Time Invariant System(LTIS):
R(s C(s R(s C(s
Input Output
Signals System
(a) (b)
R(s)
=
Rs) | R(s)
fo
R(s)
L e
Summing junction PickofT point

(¢)

(d)

Figure Components for Linear Time Invariant Systems (LTIS).




10.

11.

N
( Summing Disturbance U ('s)
Point Control _ Brz‘mch
Element Manipulated P ( ’gint
ctuating Signal Variable
R(s) —*&E— - Gl(si—- Ga(s) +C(s)
Reference T (S) =R (S ) b (S) m (S) Controlled
Input b ( s ) Forp~=- masts Plant Output

|=>
Primary <:|

Feedback Feedback
Feedback Path
Signal ( B Element
H(s)

Figure Block Diagram Components.

Plant: A physical object to be controlled. The Plant G 2 (S ), is the controlled system, of which a

particular quantity or condition is to be controlled.

Feedback Control System (Closedloop Control System) : A system which compares output to some
reference input and keeps output as close as possible to this reference.
Open-loop Control System: Output of the system is not feedback to the system.

Control Element G (S ), also called the controller, are the components required to generate the

appropriate control signal M (S) applied to the plant.

Feedback Element H ( s ) is the component required to establish the functional relationship

between the primary feedback signal B (S) and the controlled output C (S )

Reference Input R (S ) is an external signal applied to a feedback control system in order to
command a specified action of the plant. It often represents ideal plant output behavior.

The Controlled Output C (S ) is that quantity or condition of the plant which is controlled.

Actuating Signal E (S ), also called the error or control action, is the algebraic sum consisting of the

reference input R (S) plus or minus (usually minus) the primary feedback B (s )

Manipulated Variable M ( S ) (control signal) is that quantity or condition which the control

elements G ; (S) apply to the plant G, (S )

Disturbance U (s ) is an undesired input signal which affects the value of the controlled output C (s

). It may enter the plant by summation with M (S ) or via an intermediate point, as shown in the block

diagram of the figure above.

Forward Path is the transmission path from the actuating signal E ( S) to the output C (S )
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12. Feedback Path.is the transmission path from the output C (S) to the feedback signal B (S )

13. Summing Point: A circle with a cross is the symbol that indicates a summing point. The ( + ) or (-)

sign at each arrowhead indicates whether that signal is to be added or subtracted.

14. Branch Point: A branch point is a point from which the signal from a block goes concurrently to
other blocks or summing points.

Definitions

H (S ) =Feedback transfer function.

G ( S ) H ( S ) = Open-loop transfer function.

G ( S ) =Direct transfer function = Forward transfer function.

C ( S ) R ( S ) = Closed-loop transfer function = Control ratio
C ( S ) /E ( S )E Feed-forward transfer function.

4 N
RGS) ) EG G (s) C(s
Input Outpu
B(s)
\, J
Figure Block diagram of a closed-loop system with a feedback element.
10.2 BLOCK DIAGRAMS AND THEIR SIMPLIFICATION
Cascade (Series) Connections
Xa(s) = Xi(s)= Cls)=
R(s) G(s)R(s) Ga()G1(s)R(s) G3(5) Ga(s) Gy (s)R(s)
— Gi(s) ™ Gas) = Gils) -
(@)
R(s) C(s)
— G3(5)Ga(s) Gy (s) —>
)]
Figure Cascade (Series) Connection.
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Parallel Connections

o G(s) Xi(s) = R(5)G(s)
£
R(s) | G,5) Xo(s) = R(5)Ga(s) * Cls) =[£G\ (5) £ Ga(s) £ G3(s)]R(s)
- 21 - !
>
X3(5) = R(5)G3(5)
e Ga(\) 2 3
(a)
o) +G,(5) £ Gy(s) £ G5(s) | G
(b)
Figure Parallel Connection.

Closed Loop Transfer Function (Feedback Connections)

Figure (Repeated) Feedback connection

For the system shown in Figure 10-4, the output C ( s) and input R (s) are related as follows:
C(s)=G(s)E(s)
E(s)=R(s)-B(s)=R(s)-H(s)C(s)

Eliminating E (S) from these equations gives

C(s)=G(s)[R(s)-H(s)C(s)]

This can be written in the form

[1+6 (s)H(s)c(s) =6 (s)rR (s)
C (s G(s)

R(s :1+G(s)H(s
The Characteristic equation of the system is defined as an equation obtained by setting the

denominator polynomial of the transfer function to zero. The Characteristic equation for the above
system is

where

or

1+G (s)H (s) =0.




Block Diagram Algebra for Summing Junctions

Ris) -+ 78‘ Gts) Cls) — RLL GlsH _'_g Cis)
f T C=G (+R%X)
Xy o
=+GR+GX
i) Als}
Ris) ) + Clix) — Ris) + 66) C(s)
o . C=GR+X
T“ =G (+ RX/G)
() Xs)
Figure Summing junctions.

Block Diagram Algebra for Branch Point

R(s5)G(s) R(s) G(s5)
=~ G(s) |——— -
R(s) R(5) e R(s) . 1 Ris)
- — —* G Ge) >
R(\] o 1 R(.N’)
- G(s)
(@)
R(s) G(s) ] Ris) G(s)
E— G(s) b/
R(s) R(s) G(s) _ Rs) ’—. R(s) G(s)
—1 G(s) - — = G(s) -
R(s) G(s) L R(s) G(s)
— G(s) —
(b)
Figure Summing junctions.

Block Diagram Reduction Rules

In many practical situations, the block diagram of a Single {8ipgte Output (SISO), feedback
control system may involve several feedback loops and summing points. In principle, the block
diagram of (SISO) closed loop system, no matter how complicated it is, it can be reduced to the
standard single loop form shown in Figure 18}. The basic approach to simplify a block diagram can
be summarized in Table 1:




TABLE 10-1 Block Diagram Reduction Rules
1. Combine all cascade blocks
2. Combine all parallel blocks
3. | Eliminate all minor (interior) feedback loops
4. | Shift summing points to left
5. | Shift takeoff points to the right
6. Repeat Steps 1 to 5 until the canonical form is obtained
TABLE 10-2. Some Basic Rules with Block Diagram Transformation
Manipulation Original Block Diagram Equivalent Block Diagram Equation
Combining Blocks in — G e Y Y =(GG )X
Cascade X Gl GZ Y X ( 1 )2
Combining Blocks in
Parallel; or Eliminating a _" Y Y =(G1 £G2 )X
Forward Loop
Moving a pickoff point | U G’ u——=[ G- y=Gu
behind a block J Yy 1
. s {7 0= o
| 1764 e
Moving a pickoff point u
ahead of a block y TE y y=Gu
y y<—-<
: - u
Moving a summing » cb » . | I
point behind a block ! I-CT-I_’ Uy y
u y u e = G ( U —Up )
o~ :—{G]
Moving a summing point| U uq G y
ahead of a block y y= Gu1 —Uuy
0 —
&
I i G I,

Example 1: A feedback system is transformed into a unity feedback system




l Example 2:

Reduce the following block diagrams

a4 (s) f,1(s) 84(s) Ba4ls)
(a) —mm=— Gil5) |}t G;ls) e Gals) jiim
011(s) Bals) Bals) _ Bals) B3ls) Bzls)

reduces to—#=—— G, (5) Gz (5) Gils)

Ris) Els) Cls)
(b) — ) -
His)
redUCES 10 m—fed ——————— | since Cls) = G(s)Els
1+ Gls)Hls) = G(s)[R(s) — Cls)His)]
Rls) Cls)
() Gls) Gals) e
WL_J 1
IS |
is Als) Gals) Cls) _ Ris) Gq(5)Gals) Cls)
equivalent G,ls) T+ G (s)H(s) [T which === 770 GalsIHs) + G4 (5)Ga(s)
to reduces
to
Lis) Cils)
(d) Gyls) G;[Sl GJ(S'
| H] ]
C Hals)
Cls)
can be rearranged Uis) Gils) G,ls) Gals) s
thus to avoid the
interlinking loops
H;fS}
Hqls)
Gg{ﬂ
whinlj:h is Uts) - Gg‘SﬁGa{S, Cls) Uls) 61[5362{5'63151 —E[g—]
equivalent I 6, (5163 (5)H;(5) O 1+ Gls)GalsiHzls)
1o + Gyls)Gals)Hq (s

H] {5)
Galsh




l Example 3:

Y(s)

Y{&)

G
TG LT

1 H |
X(s) Kal3; s Yi=)

1+G,G, + K.G,G,H

l Example 4

N Gy(s) »| G5(s) ),
G;1 and G are in series
Hy(s) =
o H; and H and H3 are in
A
. parallel
Hy(s) |
(a) G is in series with the

feedback configuration.

s Gi(5) i®—> G3(5)Go(s) )
_L C(s) _ G G3Gy
=Gy

Hy(s)— Hy(s) + Hi(s)

R(s) 1+G3G, (Hi-H, +Hg
(b)
R(s) G3(5)Go(5) G (s) C(s)
— [
1+ G3(s) Gy(s)[H (s) — Hy(s) + H;(s)]
()
l Example 5: The main problem here is the feetbrward of V3(s). Solution is to move this

pickoff point forward.




C(s
G/(s) Gots) Gy(s) )
Hy(s) Hy(s) [
Hy(s) [
. ;ﬁ[\} G;[S) C(\}
Gals) 1 + G3(8)H5(5)
Hy(s) =
(a)
. yq_(.f) 1 4 G’.;(.‘\’) C("'o)
VG (s - 1 _—
Gi(£)Gs) Gal) [+ Gay(5) Ha(3)
Hy(s)
G(s)
Hi(5)
(B)
R(: K s (s
(s) + 615165 (s) I@,(s)_r_ ( ﬁl P l\,f G4(s) ) C(s)
X Ga(s)  N\1+Gy(s)H(s)
HH(s)
—— + H(s)
G](.’E‘.) ]
()
R(s) G(5)Gals) Vals) 1 " G1l(s) ) C(s)
— 1 o
1+ Gals)Ha(s) + Gus)Gals) Hy(s) (6’2(5) )(] + G](_S')Hgl:,\f)

R(s)

(d)

Gy(5) Ga()[1 + Ga(s)]

C(s)

[1+ Gals)Hals) + G (s)Gals) H () ][1+ G5 () H3(5)]

(e)




l Example 6:

HJ(” .
Minor loop
C
Eds) G,(5) 2344) G,(s) 15 Gyl5) 5
Glermediatc loop
HE(I}
(a)

LC5

(b)

R(s5)
Tﬂ i
Hj (s)
H_}{SI

R{j] G][S} C{SJ‘

g { ) 2
ﬁuﬂ%{ﬂ 1+ G,(s) Gyls) Hyls) Gals)

H|l‘.51

(c)

Gy(s) Gy(s)

= : : Cls
{ j G.f:]‘ G?‘j] + GI“” (-'].{SI H-_: {S:l
1 +__Gil3) Gy(s) Hy(s)
[+ G,(s) Gy(5) Hyls)

SRS - |

Ln
—

W

(d)

R{(s) G (5) G3(5) Gy(s) Gy(s) C(s)
1 +G,y(s) Gyls) Hy(s) + Gyis) Gy (s) Hy(s)

H(s)
(e)
B G,(5) G,(5) G, (5)G, (5) : = )
? 1+ Gi(51G,(5) G, () Gyls) H (s) + Gy (5)Gy(s) Hy(5)+ Gyis) Gy(s) H,y(s)

()

Fig. 2.13 Reducing a multiple-loop system containing complex paths. (a) The original
system. (b) Rearrangement of the summing points of the intermediate and minor loops.
(c) Reduction of the equivalent intermediate loop. (d) Reduction of the equivalent minor
— loop. (¢) The equivalent feedback system. () The system transfer function.
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BLOCK nmnnnhlll
1.18. BLOCK DIAGRAN REPRESENTATION

Tepresentation of a system, I |
where, Ris) = input T o,
Ciz) = output Input Catpat

Gis) = transfer function Fig. 1.686,
Then, the system can be represented as

A @ CaA+k 4 C=A-8 - e —
3 +

Fig. 1.67.

1.19. HOW TO DRAW THE BLOCK DIAGRAM
Consider a simple R-L. drcuit shown in Fig. 1.68

Apply KVL
.
I"rj =R7+ LE.E_ -.-fl-]m_]
p
Vo =L -(1.103) Fig. 1.68.

: Laplace transform of equation {1.102) and (1.103) with initial condition zern
Vils) =I(s) R + 5L I{)

Vils) = i{s) (R+ 5L - (1.104)
Vols) = SL igs) :.{1.105)

From (1.104) and (1.105)
Jols) _ sL ~{1.106)

Vils) — K+sL

34



V. =V
Form Fig. 1.68 j=— L - .(1.007)

E
Vym L -(1.108)
laplace transform of equations (1.107) and (1.108)
fs) = 3 [ = Vil +(1:109)
) = SLIfS) - -(1110)

For right hand side of equation (1.108) we use a supnming point,
The output of the summing point is given to block and eutput of the block is I{s) as per equation

(L.109).
Vils) Vig) = Vyl8) E"‘i)% Vifg) - Vils) | 1ig)
— iv,,{sj ' Vils)

Fig. 1.69. Fig. 1.70.

Form equation (1.110) the autput of block I{s) is given to another block containing the element SL
and the output of the second block is Vi,

Combining the Fig. 1.70 and 1.71 we get required block diag,

1) W, Vils) (ERLCNry v
e s il

] L

Fig. 1.71. Fig. 1.72.
EXAMPLE 1.27. Draw the block diagram of series RLC = R i e T
circuit, where V; and V, ate the input and output voitages. . c— v
Solubion : The transformed network in s-domain is shown in ' !
Fig. 1.74. P - &
Fig. 1.73
S B i
E .s[ 1
Vi) T W
by, O
o 0
Fig. 1.74.
: Vo(s) = Vyl5)
From Fig. 1.74 ; Iis) = % ~f1.111})
1
Vols) = o Iis) (1112}

For £.H.5, of equation (1.111), we require a summing point

Vil son Vil Vi e Vil-ls [T | M M [ Vel
”g‘ % R¥dl =7 R
Vals) Vils) :

Fig. 1.75. Fig. 1.76. Fig. 1.77. -
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1 T T

Combining the Figs. 1.76 and 1.77 we get required block diag,

Vils) Vil -Vl [ 10 7 Vil)
R+l & -
%., . | [

Fig. 1.78. Block diagram of series AL circuik

EH.AMPE_-E 1.28. Draw the block diagram of the circuit shown in Fig. 1.79.
jl.tl 1'"2 Rﬂ 3 1'"']-
A

o

vr@c;T@Tq v,

P

Fig. 1.79.
: (] —
Solution : () = Vil JR!'.J‘?[:}

Valth = = [0 - (e
) = 5 [Vt - Vit

1r.
Volt) = Ejlz dt,
Take the Laplace transform of above equation

1

I:{E.:I = KEFJEJ - 1."1[5!}]
1

Vals) = E[ (8} = )]
1

1(5) = j_{?'_ [Vais) - Walsl]

Viofs) = ifz[i]

Vis) Vs = Vils) i :_?] thh"_}
%ng i

Fig. 1.80 (&

Lis) Ii{s) - Infs) A | Vs
B3]

Fig. 1.80 !5

From equation (5)

From equation (6)

«(1.113a)
-(1.1138)
(1.113¢)

w(1.1134)

(11136}

(11130

~(1.113)

+(1.113M)
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From equation {7)

Vls) + o~ Valsh = Vilsh Ii)
] H': <
«%ﬂm |

/Fig. 1.80 (2]

M )
T —

Fig. 1.80 (2l
combining all the Fig. 130}, 1.80 (B), 180 (c) and 1.30 (d)

!I )

Vs L(s) 3 TV e [T [T @ )

ML G [0 B (e el T
) . 49

Fig. 1.80 (&

EXAMPLE 1,29, Draw the block diag, for the circuit shown in Fig. 1.81, where V,and 1, are the
input and output variables respectively.

From équation (B)

Solution : From Fig. 161 . ri} o
. i
i = L/ .{1.114) , L
H’I. T i Rz I
T )
i-ip = R, -41.114¥) a |
v, = L%'fi ~(L114¢) Fig. 1.8.
Laplace transform of above equation
1
Its) = 7 [Vife) - Vel (1114
Vils) = R, [H(s) - Ly (s) . {1.11de)
Vi) = SLL(5)
1
fy(s) = 57 Vele) (1.114)
From 1.114 (), 1114 {¢) and (1.114), j, we can draw the block diagram.
1ls)
Ve = Vileh = Vil E 1) Vlsh T
= -.H.-|_ R‘i ¥ EL_ ——I'r‘-'—"'}
Vyls)
: Fig. 1.82.
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L SYSTEM th
1.20. CLOSED LOOP CONTRO is fed back into an error detector and compared wi
1 .

‘e in which output ;
e oo, The feedback may be negative or positive.
the referenmoe :

Consider a closed loop system shown in Fig. 183
where,  R(s) = Reference input
E[5) = Actuating signal or error signal
Cis) = Forward path transfer function
Cls) = Cutput signal
H(s) = Feedback ransfer funeting
Bis) = Peedback signal

From Fig, 1.83 Cls) = &{s).Eis) ~A{1.115a)
Bls) = H{g).C(s) «(1.1158)
Eis) = R{s) - B(s) ~{1.115¢)

Put the value of L {#) from equation (1.115a)} in equation (1-115(E)
Bls} = His)-G{z) E(3)
B
% = G(s)-Hs)
Bz} :
Efz) = open loop transfer function = Gis) His) © o L1154)
Put the valye of Els) from equations 1,115 (e} in 1115 ()
' C(5) = Gls) [Ris) - Byz)]
Cis) = Ris). Gls) - Gis). Bls) «1.1158)
Put the value of B(s) from 1,115k in 11150
Cish = Ris) Gis) - Gis) His). C (=)
o T8+ GE) HisN = Ris) Grs)

C(5) Gis)
or m = ﬂw -.-ﬁ..]l-ﬁ_ﬂ
C(s) : Gis)
Ris) © Miz) = closed loop transfer function < 17G(E) Al
If the feedback is positive, then equation (1,115 (1} becomes
Cls)  Gis
R(s) = 1-C(s) H() . e
From equation (1,115 (ah) put the value of Cjs) in equation (1.115(#)
(=) Efs) _ Gis) '
Ris)  ~ 1+G(s}H)
L) P I
ar E[H | 1 +G{5_:|H|:.5.:| ..-[]-1]5.“}
E(s) ; Meion
sy = Errorratio= 77 Gls)H(z)
For positive feedback
o) 1 : :
R—{Fj = 1 —G['.':-}H{ﬁ:l ...[]-115!_]



Put the value of Cfs) from equation (1115 {a)) in (L115(:))
Bis) = His). Gis). E(s)

Put the value of Eif#) from (1.115 (c]) in above equation |
' B(s) = His). Gis) [Ris) - Bls]] ~{1.115)
from equation (1.115])
Bs) Gis)His) 11158
Ris) ~ 14 Gis) His)
" _ ~ Gls)H(s)
ﬁ = Primary feedback ratio = T+Gis) His) "
For positve foedback R % O}
Bis)  Gls)His) . ) [
T e wA1L113) e
R(s) = 1-Gls His) Fig. 1.84.

A unity feedback control system is shown in Fig, 1.84.
For unity feedback control system His) = 1
Cs) Gl
Ris) = T+Gle) For negative feedback

Cis) . Gls) . .
R{E} ok 1= 'G[:E} Fﬂlf |‘JL‘EIll'L‘-'E f'l."i"d.hi":'

1.24. SIGNAL FLOW GRAPH

The process of block dia am reduction COnSuming Very

block diagram is to be grredmwn. ey : W S

A simple method was developed '

by 5.J. Mason which is ko as

signal flow graph. This method js

very simple and does not require

Any reduction technique, Signal

ﬂnwl graph is applicable to

linear S¥stems, o= Rk
A signal flow graph is a

dla,g;rmn which represents a get

of simultaneous equations,
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Signal flow graph consists of nodes and these nodes are connected by a directed line called
ranches. Every branch of signal flow graph having an armow, which reprsents the flow of signal,
The following terms are associated with the signal flow graph.
1. Input node or source node : An input node is a node which has only outgoing branches. For
example ¥, is the input node.
2, Output node or sink node ; An output node is a node that has only one or more incoming
branches.e.g. x, is the output node- -
3. Mixed nodes : A node having incoming and outgeing branches is known as mixed nodes. For
example X, Xy, X, and x; are the mixed nodes.
4. Transmittance : Transmittance also known as transfer function, which is normally written on
the branch near the arrow. For example a;, dq €.
5. Forward path : Forward path is a path which originates from the input node and terminates
at the output node and along which no node is traversed more thar once.,
For example in Fig 1.101 there are two forward paths.
L x, tox, o x; to x, o X o x,
2x toxtoxtoxgtox,
6. Loop : Loop is a path umtnngimtﬁmdtcmﬁnamam&wﬂmenﬂdemdaiungWMM
ather node is traversed more than once.
For example I 0 5105
Eytox tox
7. Self Ioop : It is a path which originates and terminates on the same node. For example x, to x,
8. Path gain : The product of the branch gains along the path is called path gain. For example the
gain of the path x; ko 2, b0 23 10, 10 X5 60 X, 8 43 g 4y #4g dg
4. Loop gain : The gain of the loop i known as loop gain, For example the gain of the loop x, bo
g 10 Xy 15 Ay dyg-
10, Non-touching loops : Non touching loops having no common nodes branch and paths. For
example the loops 1, to 1y t0 X, and X, to x, aré non-touching loops.

1.25, PROPERTIES OF SIGNAL FLOW GRAPH
1. Signal flow graph Is applicable to linear time-invariant systems,
2. The signal flow is only along the direction of arrows. ||
3. The value of variable at each node is equal to the algebraic sum of all signals entering at
that node.
4. The gain of signal flow graph is given by Mason's formula.
5. The signal gets multiplied by the branch gain when it travels along it.
6. The signal flow graph 1= 2ot be the unique property of the system.
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-i“ 28. COMPARISON OF BLOCK mmnm AND EIEHAL
«..FLOW. GRAPH _METHOD,

J;-E:;' .-'\- 'ﬁ‘:-':h-?m.-" -:'i i sprel i
icabl : Appmhlnmarﬂmemwmmsm
iT:EadiEm:m:smpmuiﬁd’hFHn&. Emlwamblemmprﬁmudb}rmde :
:_;=&nmgpmnmdtakeuﬁpqamnm &mﬁgu‘dhkeﬂﬁpmnhm&bﬁmt
i_ Ee]flnnpdumtmsl. ‘ ."’selfla-upmhemdah
o5 Itmhnum:mm_gmﬂhd. ; mﬂmmhmwmg ]l.{amn galn
2 - ula.
&.-Bl_pd:diagmmiamquiredatmdl&evm ﬁtu&:utepitisnutnmytudmwﬁm
step.
7. | Transfer function of the element is shown Tmuierfmm:tlnnmshwmalmgﬁiehmﬂm
inside the corresponding block. connecting the nodes.
- B. 'Feedback path is present. Feedback loops are used.

1.27. CONSTRUCTION OF SIGNAL FLOW GRAPH FROM EQUATIONS
Consider the following sets of equations

¥y Sty +iny,

Vo =lath i+ iy,

¥i=fahh+lp

¥ =150

Vo = ta¥s + lgy ¥y
where y, is the input and y, is the output. -

First of all draw the nodes. In the given example there are six nodes. From the first equation it is
clear that the y, is the sum of two signals, Simmilarly, y, is the sum of three signals and so on. Insert
the branches with proper transmittance to connact the nodes.

Step 1: Dvaw the nodes

(-3 Q o o ' Lo} o
h L ¥ . ¥ ¥
Sbep 2: Draw the SFG for equation (1)
tn
aQ N |
¥ ¥e

o
Lyl ;\. LV L1

in
Step 3 : Diraw the SFG for equation (2)
b b

=]
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Step 4 : Draw 5FG for equation (3)

o a o
L] ¥ ¥
Step 5: Draw SFG for equation (4)
o & o -D—::-!::—D o
L2 o ¥s L1 L1 ¥e
Step 6: Draw SPG for equation (5)
fas

=] 4] u]
¥ i ¥ 1 13 ¥,
tea

Step 7: Draw the complete signal flow graph with the help of above graphs.
by

tn

tn by fa foy s
R e
,!:|'1 o] !y ..!r-:l- 4 35 }E
o by -
o

Fig. 1.102.

1.28. SIGNAL FLOW GRAPH FOR DIFFERENTIAL EQUATIONS
Consider the following defferential equation
Y+ e +ly=x ~{1.135)
Step1: Solve the eqn 1.135 for the highest order
¥ =x-3y' -5y -2y
Step 2 : Considei the left hana wm (highest order derivative) as dependent variable and all other
terms on right hand side as independent variables.

construct the branches of signal flow graph as shown in Fig, (1.108{a).
X

¥ -2
15 =5 v g
¥ -3
1fs
gy 1/s
Fig. 1.103 (2l - Flg. 1103 (3
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Step 3 : Connect the nodes of highest order derivative to the node T4
whose order is lower than this and s on, The flow of the sigral
will be from higher node to the lower order node and
transmittance will be 1/5 as shown in Fig. 1.103 (k).

Step 4 : Raverse the sign of a branch connecting the p node to the gt
nu-de_{rf a signal flow graph without disturbing the transfer s
function.

Consider the Fig, 1.103(b), reverse the sign of the branch connecting
y" to ", it is necessary to reverse the sign of all remaining branches &
entering as well as leaving the g™ node., ;

Similarly, reverse the sign of branch connecting y" to '

¥

By reversing the sign, we have already reverse the sign of branch connecting ' to y and therefore
further reversal of sign is not required.
Step 5: Redraw the signal flow graph (SFG),
1 <15 /¢ -1/s

o

Fig. 1.103 (o

1.29. CONSTRUCTION OF SIGNAL FLOW GRAPH FROM BLOCK DIAGRAM
Rules 1. All variables, summing points and take off points are represenvted by nodes.

2. If a summing point is placed a
before a take off point in the :
dirction of signal flow, in such (1) (2)

case represent the summing E__:,Q? G z & X4 g
puinl and takeoff point by a = Efg) Leed E,is)
single node. + [E]

3. Ifa summing point is placed after ‘ A G}'
a takeoff point in the direction of L]
signal flow, in such case, Fig. 1.104 (s
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represent the summing point and takeoff point by separate. nodes connected by a branch
hawing transmittamce unity. )
Consider the block diagram shown in Fig 1.104(g), the correxponding SFG is shown in Fig,
1.104 (b). -

> O

Example 1
Obtain the transfer function of C/R of the system whose signal flow
graph is shown in Fig.1

Gy

-Gs
G4

Figure 1 Signal flow graph of example 1

There are two
forward paths: Gain
of path 1:
p1=G1Gain of path 2
. P2=G2

There are four loops with loop gains:
L1=-G1G3, L2=G1G4, L3= -G2G3, L4=
G2G4 There are no non-touching
loops.

=1+G 1G3-G1G4+G2G3-G2G4

Forward paths 1 and 2 touch all the loops. Therefore, A1= 1, A =1

C(s)PA, P, G, +G,

The transfer function T =
R(s) A 1+G,G, -G,G, +G,G, - G,G,
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Example 2
Obtain the transfer function of C(s)/R(s) of the system whose signal flow
graph is shown in Fig.2.

_H2
R(S) 1 1 G, G, G; 1 C(S)
O >0 >0 >0 49, >0 »O
Hi
-1

Figure 2 Signal flow graph of example 2

There is one forward path, whose gain is:
P1=G1G,G3 There are three loops with loop
gains:

L1=-G1GoHi, Lo=G,G3Hy, La=-

G1G,G3 There are no non-

touching loops.

A=1 -G,G,H1+G,G3H,+G;,G,G3

Forward path 1 touches all th Boops. Therefore, A1= 1.
C GGG

The transfer function T = ¢ =p1 1 _ 123
Rs) A 1-GG,H,+GG,H, +G,G,G,

Example 3
Obtain the transfer function of C(s)/R(s) of the system whose signal flow
graph is shown in Fig.3.

G6 G7

RS g, C(s) X
X >0

Figure 3 Signal flow graph of example 3

There are three forward paths.

45



The gain of the forward path are:

P1=G1G2G3G4G5 P2=G1GeG4G5
P3=G1G2G7
There are four loops with loop gains:
L1=-G4H1, L2=-G2G7H2, L3=-G6G4G5H2, L4=-G2G3G4G5H2
There is one combination of Loops L1 and L2 which are nontouching
with loop gain product L1L2=G2G7H2G4H1
=1+G 4H1+G2G7H2+GeG4G5H2+G2G3G4G5H2+
G2G7H2G4H1 Forward path 1 and 2 touch all the four
loops. Therefore A1=1, A2=1.Forward path 3 is not
in touch with loop1.
Hence, A3=1+G4H1.
The transfer function T =

(1+G,H,)
Cs PA#PA,+PA, ; G G,G,G,G; +G G,G,G, +G GG,
Rs() A 1+G,H, +G,G,H, +G,G,G,H, +G,G,G,G.H,
+G,G,G,H,H,
Example 4
Find the gains  for the signal flow graph shown in Fig.4
X1 a f  Xe
O o

ignal flow graph

There are two forward paths.
The gain of the forward path

P1= acdef P2= abef

There are four loops with loop

gains: L1=- -cdg, L2=--eh,

L3= -cdei, L4=- -bei

There is one combination of Loops L1 and L2 which are non touching with
loop gain product L1L2=cdgeh
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= 1+cdg+eh+cdei+bei+cdgeh
Forward path 1 and 2 touch all the four loops. Therefore A1=1,A 2=1.
Xe B+ B cdef + abef

The transfer function T = X:l A - 1+ cg +eh+cdei+ bei+cdgeh

CHAPTER-5

Time Domain Analysis of Control Systems

When we study the analysis of the transient state and steady state response of control
system it is very essential to know a few basic terms and these are described below.

Standard Input Signals : These are also known as test input signals. The input signal is very
complex in nature, it is complex because it may be a combination of various other signals.
Thus it is very difficult to analyze characteristic performance of any system by applying these
signals. So we use test signals or standard input signals which are very easy to deal with. We
can easily analyze the characteristic performance of any system more easily as compared to
non standard input signals. Now there are various types of standard input signals and they
are written below:

Unit Impulse Signal : In the time domain it is represented by d(t). The Laplace
transformation of unit impulse function is 1 and the corresponding waveform associated with
the unit impulse function is shown below.

AD (t)

tlr
Unit Step Signal : In the time domain it is represented by u (t). The Laplace transformation of

unit step function is 1/s and the corresponding waveform associated with the unit step
function is shown below.
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0 t

Unit Ramp signal : In the time domain it is represented by r (t). The Laplace
transformation of unit ramp function is 1/s* and the corresponding waveform associated with
the unit ramp function is shown below.

tr(t)

0 t
Unit Ramp Signal
Parabolic Type Signal : In the time domain it is represented by t*/ 2. The Laplace
transformation of parabolic type of the function is 1 / s* and the corresponding
waveform associated with the parabolic type of the function is shown below.

A
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Transient Response of Control System

As the name suggests transient response of control system means changing so, this
occurs mainly after two conditions and these two conditions are written as follows-

e Condition one : Just after switching ‘on’ the system that means at the time of application of
an input signal to the system.

e Condition second : Just after any abnormal conditions. Abnormal conditions may include
sudden change in the load, short circuiting etc.

Steady State Response of Control System

Steady state occurs after the system becomes settled and at the steady system starts
working normally. Steady state response of control system is a function of input signal and
it is also called as forced response.

Now the transient state response of control system gives a clear description of how the
system functions during transient state and steady state response of control systemgives
a clear description of how the system functions during steady state. Therefore the time
analysis of both states is very essential. We will separately analyze both the types of
responses. Let us first analyze the transient response. In order to analyze the transient
response, we have some time specifications and they are written as follows:

Delay Time : This time is represented by t,. The time required by the response to reach fifty
percent of the final value for the first time, this time is known as delay time. Delay time is
clearly shown in the time response specification curve.

Rise Time : This time is represented by t.. We define rise time in two cases:

In case of under damped systems where the value of C is less than one, in this case rise time
is defined as the time required by the response to reach from zero value to hundred percent
value of final value.

In case of over damped systems where the value of C is greater than one, in this case rise
time is defined as the time required by the response to reach from ten percent value to
ninety percent value of final value.

Peak Time : This time is represented by t,. The time required by the response to reach the
peak value for the first time, this time is known as peak time. Peak time is clearly shown in the
time response specification curve.
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Settling Time : This time is represented by t.. The time required by the response to reach
and within the specified range of about (two percent to five percent) of its final value for the
first time, this time is known as settling time. Settling time is clearly shown in the time
response specification curve.

Maximum Overshoot : It is expressed (in general) in percentage of the steady state value
and it is defined as the maximum positive deviation of the response from its desired value.
Here desired value is steady state value.

Steady State Error : It can be defined as the difference between the actual output and the
desired output as time tends to infinity.

Now we are in position we to do a time response analysis of a first order system.

Transient State and Steady State Response of First Order
Control System

Let us consider the block diagram of the first order system.

1 C(sa
sT

From this block diagram we can find overall transfer function which is linear in nature. The
transfer function of the first order system is 1/((sT+1)). We are going to analyze the steady
state and transient response of control system for the following standard signal.

Unit impulse.
Unit step.
Unit ramp.

Unit impulse response : We have Laplace transform of the unit impulse is 1. Now let us give
this standard input to a first order system, we have
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Now taking the inverse Laplace transform of the above equation, we have

—H/T

T

e

c(t) =

It is clear that the steady state response of control system depends only on the time
constant ‘T and it is decaying in nature.

Unit step response : We have Laplace transform of the unit impulse is 1/s. Now let us give
this standard input to first order system, we have

1

€)= sa+sn

With the help of partial fraction, taking the inverse Laplace transform of the above equation,
we have

c(t) =1 — et7

It is clear that the time response depends only on the time constant ‘T’. In this case the
steady state error is zero by putting the limit t is tending to zero.

Unit ramp response : We have Laplace transform of the unit impulse is 1/s?>. Now let us give
this standard input to first order system, we have

1
s2(1 + sT)

c(s) =

With the help of partial fraction, taking the inverse Laplace transform of the above equation
we have

ct) =1-T+ Te t/7

On plotting the exponential function of time we have ‘T’ by putting the limit t is tending to zero.

Transient State and Steady State Response of Second Order Control
System
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Let us consider the block diagram of the second order system.

2
R(s) ¥/<_ A wh C(s)b

R —G(s) =

a s(s +2¢Wyp)

From this block diagram we can find overall transfer function which is nonlinear in nature. The
transfer function of the second order system is (w?) / (s ( s + 2w )). We are going to analyze
the transient state response of control system for the following standard signal.

Unit impulse response : We have Laplace transform of the unit impulse is 1. Now let us give
this standard input to second order system, we have

2

W

€)= s(s + 2w()

Where w is natural frequency in rad/sec and  is damping ratio.

Unit step response : We have Laplace transform of the unit impulse is 1/s. Now let us give
this standard input to first order system, we have

2

w

€)= s(s + 2w()

With the help of partial fraction, taking the inverse Laplace transform of the above equation
we have

e “Isin |wy/1 -2t + tan“#
V1-¢2

Now we will see the effect of different values of ¢ on the response. We have three types of
systems on the basis of different values of C.

c(t) =1-
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Under damped system : A system is said to be under damped system when the value of {
is less than one. In this case roots are complex in nature and the real parts are always
negative. System is asymptotically stable. Rise time is lesser than the other system with the
presence of finite overshoot.

Critically damped system : A system is said to be critically damped system when the value
of C is one. In this case roots are real in nature and the real parts are always repetitive in
nature. System is asymptotically stable. Rise time is less in this system and there is no
presence of finite overshoot.

Over damped system : A system is said to be over damped system when the value of C is
greater than one. In this case roots are real and distinct in nature and the real parts are
always negative. System is asymptotically stable. Rise time is greater than the other system
and there is no presence of finite overshoot.

Sustained Oscillations : A system is said to be sustain damped system when the value of
zeta is zero. No damping occurs in this case.

Now let us derive the expressions for rise time, peak time, maximum overshoot, settling time
and steady state error with a unit step input for second order system.

Rise time :In order to derive the expression for the rise time we have to equate the
expression for c(t) = 1. From the above we have

e “fsin |wy/1 — (2t + tan™! 1;52
v1—(2

On solving above equation we have expression for rise time equal to

c(t)y=1=1-

—14/1-¢2
T — tan lg
tr -_ -

NI

Peak Time : On differentiating the expression of c(t) we can obtain the expression for peak
time. dc(t)/ dt = 0 we have expression for peak time,

12

Maximum overshoot : Now it is clear from the figure that the maximum overshoot will occur
at peak time tp hence on putting the valye of peak time we will get maximum overshoot as

tp:

% MP = e <"/vV1-C 4100

Settling Time : Settling time is given by the expression
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2.3. TRANSIENT RESPONSE SPECIFICATIONS OF SECOND DRDER SYSTEM

The performance of a control system are express in terms of the transient response to a unit step
input because it is easy to generate. The transient response of a control system to a unit step input
depends upan the initial conditions. Consider a second order system with unit step input and the
system initially at rest f.¢, all initial conditions are zero, The following are the common transient
response characteristics.

1. Delay time (¢4

2, Rize time (1)
3. Peak time (t)
4. Maximum overshoot [Mp}
E.Setr.tingtlm&ft,}
6. Steady-state error (¢.)
pell)
ff!]w...__T__.._.:: o
| -
| e T=1fEm,
M, ' -
| l I : iﬁq_ Ttmct b 2%arss
10 ~=¥ === == [ (PP F SR TR A, R L o
i I : - 1 T
[ 1 ! o 1
1 1 Loy 1
| | e |
1 1 ] 1
|:|.5""- | 1 _,-"‘-.‘ : 1
ok AR | h |
] 1 1
: i 1 : : 1
i i 1 1 i ¥ |
1 i : | I I
I ! ' . ; > b
§ r w5 Ia
= p'_)l -:.:-_-J]-;‘ u.-,]'] ¢ ﬂ\r"!.:
€ b
i.—!,,—)-l
. tl.. — _;-!I
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Time-Domain Analysis o 953

1. Delay Time (£, : The delay time is the time reguired for the response to reach 507 of the final

walue in first Gmme,

2. Rise Time (t ) : It is the time required for &mrewmﬁseﬁumlﬂ%mmﬂfitﬂrmnlvalm

for overdamped systems and 0 to 100% for underdamped systems.

3. ]"ﬂk"l‘imr{tP}:T']'Lepeaklrim-eis&wﬁnﬁeraqui:edﬂ}rthenapﬂrﬂetc:readimeﬁmtpeakuf

the time response or first peak overshoot.,

4. Maximum Ocershoot (M) : It is the normalized difference between the peak of the Hime

response and steady cutput. The maximum percent overshoot is defined by

(e b= e}
Maximum percent overshoot = —{%r—x L]

5. Settling Time (t,) : The settling time is the time required for the response to reach and stay

within the specified range (2% to 5%) of its final value.

6. Steady State Ervor (e, ) : It is the difference between actual putput arnd desired cutput as time

‘+ tends to infiniky.
&= EHE{T{*}—C{!]]

pression for fge Thamalr .

From the equation (2.20)
- gt 2
Ci=1= .,JI].—_I';E ain [I:mﬂ]l—g. :]!‘-1- h}
" E2
where th = l‘nm_l‘hTE'
Let response reaches 100% of desired walue, Put ¢ (f) = 1

P

1= ].-ﬁ-:ui—’sm[[:m“rl—_ﬁf]aw*]
ar ﬁsh[{mﬂﬁ'}f+¢] =10

Since, ¢ 302

Bin[limu-.lll-_Efle':'} =0, or ﬂm[[mnﬁ}”*] = 8in R

Futa=1
'[m,,..ll--ﬁEII.t;+¢ =T
n__
M
BT i
| ®—tan"t 1-5° | b
g |
i =
ar ! F Wﬂ\ﬁ-'ﬁi
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94 1t Automatic Control Systems

E::pms-smn for Feak Time L

Since, < () = 1= e mq[‘{ ﬁ}w]

Fur:naxiﬂ‘mmd-ﬂ=ﬂ

AL ﬁm[[%ﬁ)r+ﬁ] 15 + ol (o, Jr.;?jughiﬂu_

1-£8
- 2.38)
Since et 2 )
Equation (2.33) can be writen as .
: ms{[m,,ﬁ]ﬂt]ﬂ:!in[[m,-.l'_l—?]tﬂ]% ' _...{239;
Put V-8 =sing &  E=cosy
Equation (2.39) becomes
ma[[:m,,JT—_ﬁ_*]qu]sin# =sm[[m 1- Lf,!}dﬁl]
or ﬂn[[m,ﬁ)uq:]mq:—oos[m 1- E)tﬂn]sm:h 1)
ar aixl{mnull'l—_ﬁ,zu]I':ﬂ
the time to various peaks
(187 )ty = |
wheren=0,1,2,3,... |
Ma:dmummremhmtidmﬁﬁedhyputtingn=1,t1wrefnreﬂﬂe;|:rmlcﬁ1neh}theﬁr5twerm:mt

L

i 5640

Theﬁrsl;mlmmum {mdeahmt]u}r:tu:satr:!:l
gt n

Ty yf1-E2

~2.41)

Expression for Maximum Overshoot : Mp

0= 12 s T ] Y

Maximum overshoot ocours at peak time fe. ¢ = b
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m )
JE— ‘LE]
Put tm b= in equation (2
F ""':"u'lull"E.-l

- [!-tu.':':""}l'il:' . |-E|] 1-"-5,1' i +¢|
R = R
=1-£ - gin [+ ) 2 A3
-8
2 S . - -
Since b = tan" I.E;E‘ - then  sing= ﬁ-—f and sin (£ + ¢} =—-sin g
f"ﬁ"l"ﬁ :
Cih =1+ =T (ainmd)

Cil) = 14¢ =

Mp = CHAf) el

p= (2.44)
My = ¢ 10 %100

Settling Time - f,:

: byt . ,
g f the transwent
As shown in the Fig. 2.17, the curves for liﬂ are the envelope curves o

1
s of the
response for unit step input. The time constant of these envelope curves 18 Fg, - - The speed

i frnakely
decay depends upon the time canstant. The settling time for a second order gystem is approximatel)
four times the time constant (1,/5e,)

4

— _{2.43)
t, = Em,

i 2.45);

For overdamped system, I:hessettljngltime ﬂ:fz becnmu: :]a;-gtﬂmuse E;f ﬁ::‘ggush E.;t:f]:tnlgﬁrﬁ?émurzl
oHling time is inversly proportional 10 prod _ e 30, bor perm

ﬂﬁ‘t:tﬂ:;.gﬂw value of "n;}lispknmm therelone the settling me can be determined by undamped

natural frequendy .

i e Pm—est Hhawraliies
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Error Analysis

Inside this Chapter

3.1. Classification of Contral System: 3,2, Steady-State Error; 3.3, Static Errar Coefficients;
3.4, Steady-State Error for Different Type of Systems: 35 Dynamic Error Coeffigients

3.1. CLASSIFICATION OF CONTROL SYSTEM

Consider the open loop transfer function
; K{1+ 5T, (1+5T;)...
G{ﬁ}H[E] s 5LT|:1'|'51}:":I+FT¢_]+-.- ...{3.1}
In equation (3.1), the poles are at 5 = -Ti, g = _Ti .. At zeros are at 5 = Jfﬂ*
d b

5=/ 1. The equation having a term s™ in denominator, ‘nr’ is the number of poles at the origin.

A system having no pole at origin of the ' plane, is said to be type 0 (zern) system ig,
=0

lim=1de, s, it means the system has a pole at origin of the s-plane and is said to be type
1" (one) system, .

A system is called type ‘2’ system i m = 2. and so on,

J.2. STEADY-STATE ERROR

The steady-state error is the difference between the input and output of the system during steady
state. For accuracy the steady state error should be minimum,
Consider a closed loop control system shown in Fig. 3.1

() 1 : :
R(s) = T+CHGE) —Eflh..’@_ﬁl_gﬁ@- -l
G e L = |
The steady state error of the system iz obtained by Fig. 3.1,
applying final value theorem, |
I = :Um “it) = .:LTE i 3 --.{3.3}
. Ris)
# =50 TeGHE) (34)
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For unity feedback system Hig) = 1
. Ris)
e = 1 ¥ TIE(G) -{3.5)
' From the equation (3.4) or equation (3.5) it is clear that the steady state eTrar depends on the
input and open loop transfer function.

2.3. STATIC ERRDRA COEFFICIENTS

fab Static-Position Frior Constanl for Coefficient) K|
The steady state error is given by equation (3.4)

. Ri=)
ey = LS TIESIHG)

For unit step input Ris) = !; . the steady state error is given by

o1 1
¢ = LM S TIGEHG - T+ Lim GIHG)
1
= K (36)
Ky = statig position error constant = HMHG{STIHLE}
(I} Static Velocity Error Constant (or Coetficient) Kv
: 1
e, = Lims RIS TR
Steady state error with a unit Tamp input is given by [Rls) = 1/6
Lamn 5.l ,_I..—
€ = (b .53 1+ G(s)H(5)
; 1
Cps = E:E- 2 +sG{s1H(s)
. 1
= Lin SE@HG
1
"?55 = 'K_* .{3.?
where Kv = Linﬂ g G{s)H(3) static velocity error coefficient.
A —
e} Static Acceleration Error Constand K, ) o
The steady-state error of the system with unit parabolic input 1s given by
1
Rig) =3
Liﬂis--l—-——l — _ Lim—m—————"
£y ® UMS T TIGEH) T a0 5° +57°GIsH(E)
1 : 1
L —m————— =
o 2G5 H(E) - K (3

where K, = __f‘f{‘:’:, s ({s) Hig) = static acceleration constant.
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3.4, STEADV-STATE ERROR FOR DIFFERENT TYPE OF SYSTEMS
L {a) Type Zero System with Unit Step Input
1
Ris) = <
From equation (3.1)

K{l#sT 1(1+35Ts ...
Gl HE) = “Brary(in -69)

_ LimG(sYH{5) _ pige T+ (145T5)..
Ko = ro CEIRe) o 4 {(1+5T, ) (1+5T,)...

From equation {3.6)

: 3 ARG
. ta ™ 13Fn 1K | o =1+_ﬂ
Hence, for type zero system the static position error constant K, is finite.
i Type ‘0" System with Unit Ramp Input
e . K{1+5T 1 {(1+5T5)...
= Lims-G(s)H(s) _ i 1 £ il
K= () - f‘ﬂs (1+3T ) (1+5T,)...
. s =

“"% - [W=-
ich Type *0° Svstem with Linit Parabolic Input

K(1+5T 1 {1+5T;)...
(1+s5Ta) (1+sT;)...

Fi = s}-'i:ﬂn sTGsMH(s) - ;L_I;mn?z
En =0

1
= e g - < R e
For type "0 system, the steady state error is infinite for ramp and parabaolic inputs. Hence,
the ramp and parabolic inputs are not acceptable.
e} Type "I° Systen with Unil Step Input dne = 1)
E{1+sT ) (145 ).
Gis} His) = s{1+5Ta) (1451, ).,

: . K(1+5T) )} (1+35T; ...
ELEE:E Gls)H(s) = fiﬂﬁ s(145T, ) (1+2T,)...

1 :
%= TeE, "0 [%=T]

it Type “1' System with Unit Ramp Input

Ep

-]

: : . E1+sT(148T ..

Lint 5-G(s)H T A TETT A
K, = (33 COME) w Lim e ooy
K, = K

ﬂ'ﬂ:K_D:'H:- |Eﬁ=!

?'ErHI
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Pobepe 1 Bysben with Unit Parabolic input

e
. , K(1+sT3)(1+35T, ).
§ His) = Lims® - -
K, = LSO = Lin s ST -
1 (st
b = K, =7 18 = m}

Hence, from above relations for type ‘1" system, it is clear that for type '1' system step input
and ramp inputs are acceptable and parabolic input is not acceptable.
%oful Type "2 System with Uil Step lopul
K(1+5T;) (14515 )...
Gls} HiE) = “Fi 45T, ) (14 5T, ).

Kp = LG L s1+sT I (1+8T 0. —
R —
tn= Tk =0 (5=

i) Type ‘27 System wilh Unit Ramp Input
= LimsGisIH(s
K‘.s' = 5—|-m[I (s} (5]

mﬁ_R’i1+ﬂT1]{1+5T2J..‘.I
= sl s (14T 1+5T, ).
1 .
= =4 By =|-01
[+ i

===l

o) Type 27 Syatem with Unil Parabolic Input
. 1 b
= G5} H
K, = Lims'GEH() |

= Lim 51 : Kzl:'l-l. 51y }{1+ST2.]'r-
s=0 g (145T, ) (14513 ).

1 1 1
Eﬁ: =5 -j-:-: T E ﬁ'ﬂ_ = E
Hence, for type ‘2" system all three inpufs (step, ramp and parabolic) are acceptable.
From Table 3.1, the diagonal elements are the finite values of steady state error.
Table 3.1.

(e .-.___-_-_..._.._TiFE.W. T}‘-[E L e
! . System System System

| - ] ik e l i i et s wek __-.
! Unit step input 1+% 0 0 '
- - | 74 W et 0

! Unit ramp mput L ; I E

5 L

| Unit parabelic input o s N
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EXAMPLE 3.1. The open loop transfer function of unity feedback system is given by

511
Gl8) = Hr0.19) (s 710)

Determine the static error coefficients Kp K and K.
Solution : K, = LimG{s)H(s)

. 5]
= f"—rf:{ (1+0.15) (s+107 = 3

Lite £ G sp =0 E
K, = 2057 O < Lims (1+0.1s)(z+10) = ¥

e 50
K, = _s{llf?.s (1+0.1s)(s+10) = Y

EXAMPLE 3.2. The forward path transfer function of a unity feedback control system is
given by

N

5(s"+ 25+ 100)
CE} = s+ 51 (s 35 +10)
Dretermine the step, ramp and parabolic error coefficients. Also determine the type of the
S¥abeTm.,

: : 5(s® =25+ 100)
3 = Lim Gs)H(s) _ -
Solution ; K. = ,;_;na Gle)H(s) _ ,I'—T-:E g {5+ 5) (52 +35+ 10

Kp = = F"’l

i : 5" + 22+ 100)
= Lim sG = Lt 2
i B la - e s T e

R B

. 2 T 2, 5{531'2“-1["]}
K, ‘_::-.'I; Gl H(s) _ EJ_:'E = $=f5+5}{52+33+1m

= 10 | F:u a.ﬁl
In denominator the value of m = 7. Hence, the given system is type ‘2" systemn,
EXAMPLE 3.3, The block diagram of an electronic pacemaler is given in Fig. 3.2, Determine
the steady state error for unit ramp input when K = 400 Also, determine the value of K for
which the steady state error to a unit ramp will be 0.02.

Solution : Given that & = 40

Pacemaker Heart

1
Bz = —= (=) | K 1

g »{ %! ] = p—3 5]
His) =1 s + X0 !

.K'
Gis) His) = 5+ 20) Fig. 3.2.
b3 o3 ; R(s)
Steady state error is given by ¢, = Linr "I CEIHGE)
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1 a+20
e = ﬂi‘lﬁﬁ ﬂ—ll-l-—ﬁ }ﬂﬂm = 0.05 Mg,
, s(s+20)
Now ¢, = 0.02 (given)
- 11
L Hﬂs 5 1+—K
#(s+20)
. s+
002 = Lim R
zn — -
002 = T KIIIII] Ans,

EXAidFLE 5 4. For a unity feedback control system the forward path transfer function is
given by

20
sl5+2) (% + 254 20)

Gls) =

Determine the skeady state emor of the system. When the inputs are (i) 5 (7) 5¢ (i) %I-.
Solution ;

5
(i) =5 Rfﬁ“]l=;
¢, = Lims-E(s) _ _ Bs)
540 .1-|l|]' 1+G{g}H{s)
1
¢, = Linis 3 1 _ Lin Eﬁ:sﬂg{s + 25+ 20)
=05y 4 s=00 8(a+2)(5" + 28+ 20)+ 20
s+ 2) (55 4 254 20)
-E”=|:l
. 5
lii) R{s}:ET
o 1 5 s(s+2)(s" +2s420)
EN'H’ESF'H_ W Tas0 & se42) (R4 254 20420
s(5+2) (5° + 25+ 20)
Em=]{|
@ Ry
(s} o

3 a(s+2) (st 425420
¢ ow LIS —- 7
50 aal £ g(s+2) (st + 254 20)4 20

[!.EE o
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CHAPTER-6 FEEDBACK CHARACTERISTICS OF
CONTROL SYSTEM

1.32. EFFECT OF PARAMETER VARIATIONS

n control systems, the feed back reduces the erraor, also reduces the Eens_ili'l.riltj:r_gf the syster to
sarameter variations, The parameter may vary due to some change in conditions. The variation
n parameter affects the performance of the system. So, it is necessary to make the system in
ensitive to such parameter variations,

1.32.1. Effect of Parameter Variations in Open Loop Control System

The open loop control system is shown in Fig 1.116. Ris) | ¢ > i)
iﬂ Fig. 1.116. .
") =G g

aF, Cis) =G (5) - R{s) w1137}

Let AG(s) = Change in G(5) due to parameber variations

AC (5} = Corrésponding change in cutput
From equation {1.137}

C (5} + AC(s) = [G (&) + AG{s)] R s)
Cls)+AC(s) =G(s) R (s)+ AG (5 Ris)

Since, Gis) R(s) = Cls) -
Cis) + A Cis) = Cls) + A G(g) Ris)
or A C(s) = A Gis) Ris) {1.138)

Equation (1.138) gives the change in output due to parameter variations in G(g) in open loop
system.
1.32.2. Effect of Parameter Variations in Closed Loop System

in fig 1.117
The closed loop s:rs::jm Is 3hnv;{1$? fig 1.1 R r >Ci6)
3 " TFEe T (1.139)
His)

Gls)
or, Cl8) = T Gls) His)
Gis)+ A G(s)
Cle) + AC(E) = TTG(s) + A Gs) H(s)
_ Gis) + AGI(3) Ris)
1+[Gls) His)+ & G(=)] His)
Sinee, A Gs) His) << [1 + G(s) H(z)], neglect & Gis) His)

Glsh)+AGls) gy Gls) ase)
Ce)+A0E) = T e N = TeemBE O Trem A

Riz) Fig. 1.117

E(s)

Cle)

Since, EEF} = m R{E}
Cls) + A Cig) = Cls) + ﬁiﬁ-’ﬁ Ris)
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AGls)
1+ Gis) His)

Equation (1.140) gives the change in output due to parameter variations in Gis) in a closed
loop system.

Generally [Gis) H(s)] =>1

from equation (1.140) it is clear that the change in output is reduced due ko parameter variations
in Gis) by [1 + Gis) Hiz)]. But in open loop system there is no reduction because of no feedback.

1.32.3. Effect of Fecdback on Sensitivity

The parameters of any control system changes with the change in environment conditions,
Also these parameters cannot be constant throughout the life, These parameter variations affects
the performance of the system. For example, the resistance of the winding of a motor changes
due t0 the change in temperature during its operation. '
50, & control system should be insensitive to the parameter variations. Let Pis a gain param-
eter that may vary due to the variations in parameters ‘R’ of the system. The sensitivity of the
system parameter P to the parameter R is

" ?‘E;dmngeinR
" %change in P

i ACls) = Ris) LL14)

S

1
d(nR) R R _3RR

S “dmP)  lap 3RP
F

In general ‘R’ may be the output variable and ‘P may be the gain, the feedback factor ete,

Lat T{s} = Overall transfer function
Gis) = Farward path transfer function is varying
Then, sensitivity will be
T i E’T{s]!Tts! 11
S AG(s)/ Gls) =i,
For open lnop gystem T{s) = G(g)
o aG(s)/Gs)
¢ " 3Gis)/Gls) T
Thus, the sensitivity of open loop system is unity,
Sensitivity of closed loop system;
_ Gl
&) = 13 Gl He) ekt
dT(s)  [1+Gls) His)]-1- Gis) His) 3 1
9G(s) [+cHET [1+cE HET

Sensitivity is given by from equation (1.141)

5’!" = @ E_T(ﬂ
57 Tt 3Gl
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Put the values of T{s} and a T{s)}/a Gis)

Gis) 1
© TGl [1+Gis) His)
1+ Gy His) [ ; :r
1
T _
S¢ = T+ Gis) His) ~A(1.143)

From equation {1.143) the sensitivity is reduced due to the feedback by a factor 1/1 + Gis)
Hi#) as compared to open loop system.

Sensitivity due to the variation in Hisk:

from equation (1.142)

ate  [eef
JHE) ~ [1+GlshHis)]
o o HE 3T HE) e
H* T aHE) | __GE__ [14G() Hiel
’ 1+ Gis) His)
- Gis) H(s)

T ——
SH * Tr Gis) Hi9) cn1.144)

From equation (1.143) and (1.142) It is clear that the closed loop system is more sengitive to
variations in feedback path parameters than variations in forward path variations,

4.32.4. Effect of Feedback on Dverall Gain

The overall transfer function of epen loop system shown in Fig. 1.118 is

% = Giz) Rig) —— Glg) > Cis)
The overall transfer function of closed loop system shownin Fig. 1.118
Fig. 1117 is _
Cs) _ Gl -

Riz) ~ 1+ Gis) Hiz)
For negative feedback the gain Gig) is reduced by a factor ﬁﬁﬁ . 5o due to negative
feedback overall gain of the system reduces.

1.32.5. Effect of Feedhack on Stahility
Consider the open loop, system with overall transfer function

K
Glsh =351

The pole is located at s =—1
Now, consider closed loop systemn with unity negative feedback; then overall transfer function
is given by
Clsy K
Ris) s+(T+K)
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Now, closed loop pole is located at s = — (T + K)
Thus, feedback controls the time response by adjusting the location of the
: poles. The stabilj
depends upon the 1u|:_.=..rmn of poles. Thus we can say the feedback affects the stability. Feedhai
can improve the stability or may be harmful to stability if it is not properly design and apply.

CHAPTER-7

STABILITY CONCEPT & ROOT LOCUS

5.1. CONCEPT OF STABILITY
The concept of stability is very important to analyse and design the system, A system is said to be
stable if its response cannot be made to increase indefinitely by the application of a bounded input
excitation. If the output approaches towards infinite value for sufficiently large fme, the system is
said to be unstable,
A linear time invariant (LTI) system is stable if
1. The system is excited by a bounded ivprut, the output is bounded (BIBO stability criteria).
2 Inli'-eamm:eufﬂmmpuhtheuutputtmdsm'wa:dsm{ﬂﬂeaquﬂﬂ:ﬁmmmwmesfml
This iz known as asymptotic stable.

Consider the transfer function
Cls) 8"+ 35™  +.ys #ay
Ris) = bys" +by 15" 4., by b, w1}
The output is given by SIEET
Cf) = _[z(‘rllr{f—ﬂn'*-r {5.2)
1]

where g(1) = £ G{s) = impulse response of the systemm, 50, a system is said to be stable if the impulse
response approaches zero for sufficiently large time, If the impulse response approaches infinity for
suffeiently large time, the system is said to be unstable, If the impulse response approaches a constant
value for sufficiently large time, the system is said to be marginally stable,
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5.2. EFFECT OF LOCATION OF POLES ON STABILITY
{a) Poles on Negative Real Axis
 Consider a simple pole at s = = 2 as shown in fig, 5.12., the corresponding impulse response it
given by
K
glf) = £1Gl) = £ —— = Ke® d5.3)

8+
As the time *# increases, the response approaches zero and the system s stable. The respanse 15

shown in fig 5.1(h).

o)
-
7 i
a » !
{2} Simphe plle on negative real axis i) Response
Fig. 5.1.
(b} Pole on Positive Real Axis

Conshder a system having simple pole on positive real axis at s = 4, the corresponding impulse
response is given by
a K
glt) = £ — =Ke' (5.4)
The response increases exponentially with time, hence the system is unstable. The simple pole
and response are shown in Fig, 5.2 (#) and (b).

al, A cith
”
i »Fe
0 !
{o) Simple pobe on positive real axis (b} Response
Fig. 5.2.

(¢) Pole at the Origin : Consider 2 Pole at Origin

gl = E"g =K A5.5)

This is constant value, hence the system is marginally stable. If there are two poles at the origin,
the time response would be

g = £ {56)
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$ Iy i}

. LSRN ST
x 3 Re
) 5
() Single pole at origin (B} Response due o single pols
Fig. 5.3.
? I, et
| T
|
> Re
: i !
() Double pale at origin (B} Impalse respanse
Fig. 5.4.

(ef) Complex Pole in the Left Half of s-plane

Let the transfer function has a complex conjugate poles at s =— e jo . The time response due to
the complex conjugate poles is given by

= K K gl 2K (s +e)
glf) = £ L+n-jm+s+|:t+j-[a]=E [m =Keommt .{57)

When  increases g(t) approaches zero and the system is stable. The complex poles and
corresponding time response is shown in Fig, 5.5(2) and 5.5(k) respectively.

Lyje)
X M

ot | e
e i 3 Re ﬂ H\:f{i"’r e |
x yRL:

(-~ o

2

4
) (¥}

Fig. 5.5.

{e} Complex Poles in the Richt Half of s-plane
Suppase the system has complex conjugate poles at s = o+ ju. The time response is given by

el A A ) 2e-0 ]
#lf) = £ [H—ﬂ—jm+5—ﬂ+ﬁﬂ]_£ Ls_ﬂ}l-l_m!]—zﬂs‘:”cusmf A58

Hence, the response increases exponentially sinuscid with time and therefore the response is
uristable. The poles and time response shown in Fig. 5.6(s) and 5.6(b) respectively.
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L x

| ﬂ"'}ﬂ]

% -» Fr ;
i X

o

{m) ]

Fig. 5.8.
(N Pales o fieaxis
1 the system having the complex poles on juraxis the corresponding ime response would be
-l A _.l'q_'_ -i 2As
git) = £ L+jm+5—j{|] =£ [EEHﬂ
The response s marginally stable. Theequation (5.9) shows the sustained oscillations of constant
amplitude, This situation will also be considered unstable.

2] =24 cos ot {59)

L
N A AT
s WA
UV . N P L | 5 t
! YAYA
X 1_’1»!'}.}&1
[H}Pﬂl-ﬂﬂmiimngilm axis | (B} Time resporse
Fig. 5.7. .
The cwverall transfer function is given by
Cis Gs)
Rie) = 14G ) (5) o2 10)
The characteristic equation is 1+ G (s)H {¢) = 0. [B.11)

The necessary and suffidient condition that a feedback system be stable is that all the zeros of
the characteristic equation 1 + G (:)H (5) =0 have negative real part. Or, in terms of poles we can say
that the necessary and sufficient condition that a feedback system be stable is that all the poles of
overall transfer function have negative real part,

5.3. NECESSARY BUT NOT SUFFICIENT CONDITIONS FOR STABILITY

Consider a system with characteristic equation
aE™ + 4™+ by = 0 -{5.12)
(a) All the coefficients of the equation should have same sign,
(b) There should be no missing term.
If above two conditions are not satisfied the system will be unstable. But if all the coefficients
have same sign and there is no missing bertr we have no guarantee that the system will be stable. For
stability we use Routh-Hurwitz Criterion.




3.4. THE ROUTH-HURWITZ CRITERION
Consider the following characteristic polynomial
65" + 85" b, = 0 ' -45.13)
where the coefficients a,, ,....2, are all of the same sign and none is zero,
Step 1: Arrange all the coefficients of equation (5.13) in two rows

Bow1 a5 iy F, E A o
Bow?2 - iy i3 s
Step 2 : From these two rows form a third row :
Row 1 iy dy iy
Row 2 iy q -
Row 3 by by .Er5 .......
where, : E'L = = A e
Ay Iy dy
by = _nl o :i
1y dg
Step 3 : From second and third row, form a fourth row
Faow 1 iy iy PR I (< -
Rﬂw I El ﬂj I:IE T | 7o)
Row 3 bl by A A
Rowr 4 : £ £y e £
where,
ax 3 1[h &
17 i By b

118 iy
£, = ——
; E’1tl by
Step 4 : Continue this pl'm-ll'::lurtuf forming a rew rows,
5.4.1. Statement of Routh-Hurwitz Criterion

Routh-Hurwitz criterion states that the system is stable if and only if all the elements in the first
column have the same algebaric sign. If all elements are not of the same sign then the number of
sign changes of the elements in first column equals the number of roots of the characteristic equation
in the right half of the s-plane {or equals to the number of roots with positive real parts),

EXAMPLE 5.1, Check the stability of the system whose characteristic equation is given by
A28 468 44541 = 0
Solution : Obtain the array of coefficients as follows
gt

1 B 1
g 2 4
gt 4 1-
gl 3.5
i 1
11 & 1[2 4
*"1='E‘E 4‘= Ef'EL 1‘=3'5
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=1, ' dym=

1 11 114 1]
2f2 © 3.5 Is 5 u‘
Since, all the coefficients in the first column are of the same sign {p-nslhve} the given equation
has no roots with positive real parts. Hence, the system is stable.
EXAMPLE 5.2. Determine the stability of the system whose characteristic equation is given
by

2t 428 + 43542 =0

Solution : gt 2 1 2
g 2 3,
52 . -2 2
51 3
57 2
12 1 _
"1 =3k C =" -1;.-2 z
112 1-2 2
= me =2 [ pp—— =2
2‘2 :1 ' g 5‘5 u‘

There are twia changes of sign in the first columnifrom 2 to <2 and from -2 t0 3), hence there are
two roots in the right half of s-plane. The systemn is unstable.
EXAMPLE 5.3. Determine the stability of the system having following characteristic equa-

tion : :
26t 4+ 57 4587 + 254+ 1510

Solution g 2 5 1
33 R 2
at C42 ' 1
at 0809 '
gt 1
From the abovie Rodith table

Mo nfslgtchangﬁmﬂrﬁt umn = {
Eq.-:ieni.’f.-p]ane=ﬂ

Ae2 43 ds 45 EI '
Eulutmrt g

From above table :

Nao. of sign changes in first column = 2 . : [
No. of roots in right half of s-plane = 2

Hence, the system is unstable.
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204 Hautomatic Control System

EXAMIPLE 5.5. A closed loop control system has the characteristic equation given b
P rd5:2 385 +15=0 7 d

[‘I‘l"l-'ﬂﬁga‘te the stability using Routh-Hurwitz criterion. (R.M.L Universify Faizabad, 2001)
Solution : £ 1 - 11 :
5 4.5 15
gl 3ar
¢ 1.5

MNo. of sign changes in first column = ()

No. of roots in right half of s-plane = 0

Hence, syatem is stable,
EXAMPLE 5.8. Check the stability of the system, having following characteristic equation,
Solution: §+Es"'+3s3+2.51+3+1=ﬂ

1 3 1
o [ s 1
# 267 L83
#* 0.135 1
gt -13.95
gt 1

No. of sign change in firat column = 2

No. of poles on right half of s-plane = 2

Henwe, system is unstable. ]
SIMECIAL CASES

Case 1: Ifa first column term in any row is zero, but the remaining terms are not zero cr there
15 no remaining term, then multiply the original equation by a factor (5 + 4) where ‘s is any positive
real number. The simplest value of ‘2’ is 1 (take & = 1). Consider the following example.
EXAMPLE 5.7. [nvestigate the stability

F+it e e 224 5=00

Solution ; 5 1 2 3
54 1 2 5
5 1]
2
41
0

Now, multiply the Chai‘attﬁristicequal:innbjf[.ﬂ+l]
ErDiE+51+ 288+ 2824 354 5) =0
or, #4257+ 38 + 454 + S 4 B 4 5= D)

b 1 3 5 5
g 2 4 a
gt 1 1 5
# 2 B
52 . 5
5! -7
s 1
From the above table :

" No. of sign change in the first column = 2
No. of roots in the right half of s-plane = 2
Hence, system is unstable.
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3.6 Rootlocus technique

3.6.1 Introduction

[lee maim aim of a control svstem Engineer is 0 design a comiro] systemi that meccts
e desired specifications. While designing the control] sy'stem, it 15 amportant o
Aetermmine whether his design of control system meets the desined specifications or
aat. This can be done by observing the response of the system For test signals, IT
the response does not meet the specifications, then he has to redesign the system by
changing the parameters. Moreover the designer must also check the stability of the
systermn. This can be found by determining the roods of the characteristics egquation
| + (s} H () = 0. For higher order systems. it is a laborious process, But applying

Routh criterden to the characteristic equation it is possible (o determine whether the
sygtem is stable or unstable. Bt is has certain drawbacks.

1. It does not give sufficient information aboui relative stability of the system, that
is. the amount of overshoot and the settling time ete. Sometimes poor ralative
stability may bring the system 1o the verge of instability.

2. It does net help much in design problem in which he designer is required 1o
achicve the desired performance by varying one or more system parametsrs.

The desived behavior of the system is specified in terms of steady state error, peak
over shaot, settling time, rise tine cte., for a step input. Tn section (2. 19}, we studied
that the location of closed loop system poles (reots of characteristic cquation) and the
transient response specifications are interrelated. 10 is fregquently necessary to adjust
aRE OF moTe systern parameters in order to obiain suitable locations ol ronts. Therefore
it iz worthwhile 1o determine how the roots of the characteristic equation of a given
systermn migrate on the s-plane as one of the parameters is adjusted. The locus of
this migeation is known as root locus, Omee the locus is abtained, one can select the
poles on the root locus which meet the desired specifications and then can obtain the
cosresponding adjustable parameter. That is, by adjusting the location of closed loop
pole one can obiain the desired specifications,

Construction Rules

Rule 1:

The roo! focws is symmmetricol abos e real axis and the number of branches equal

ta the order of the polvnomial (Number of poles of the apen foop transfer fimction).

The roots of the characteristic equations are either real, imaginary or complex
conjugate or combination of the above; therefore the root locos is symmetncel about
real axis. The root locus above the real axis is mirter image of the root locus below
the real axis and vice versa, The number of branches of the rood locus 15 equal to the

order of the characteristic polynomial,

Hule 2

All branches of vood focus siaris af oper loop pdes (wihen k= 0} and ends af either
open loop zero or infimity fwhen & = oo). The number of branches termirating af

infinity equalys fn the difference between the number of poles and numbar af zevas.
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ule 5:

A poini on the real axis lies on the rood locus if the sum of the poles and zeres on the
recrd axis fo the right of the poing is an odd meeber.

Consider the open loop pole and zero config-
uration as shown in Fig, 3.23. Leti s, be the

test point. To check whether the @8t point s; I

is on the root locus or not, join all the poles :

and #eros 1o this point. At this point the an- ,{%—

rles made by the lines joining g, pa, pa and pg o

with sp are £ sy + ., <80+ pe, Leg b pyand m g} f 1‘ -
Zay + py tespectively, Similarly the angles T R

made by the lines joining 2y, 22, 23 and 27, ane ‘E.."n.."rf"

L8y + 21, Lan + 2p, L+ oz and Lap + oz Fig. 3.23

respectively. From Fig, 3.23 we can ohbgerve
that the angles made by gy, po and 2y are

Lagtm=FLaptm= et n = 1 80 (335
and the angle made by zo, 1y and py are
Sspt o= Leg+ 2y = Lag g =10 (3.34)

Angle made by zyand zlwith so are equal and opposite (ie} £s + 33 + Lan + 23 = 0.
Therefore it is not necessary to consider complex poles and zeros,

jm

=4

'
Fig. 3.24

The sum of the angles contributed by complex conjugate poles is zero. Froon this
we conclude the following

1. The angle contribution of all the poles and zeros on the real axis to the right of
the point is 150°.

2, The angle contribution of all the poles and zeros on the real axis to the left of
the test point is 0F.
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1. The angle contribution by complex comjugate poles and zeros is wero.

From Eq. £3.33) & Eq. (3.34) the angle of &(s)H (5] with the point s 15 given
by

o1+ Ppo + 'I'JG + ':I.:“"‘ + g+ P+ Paa + P
= 1307 4 180° 4 0F + 180° + 0F + 0 + 0° 4+ 0° = 180"

L30° is odd multiple of 1807 therefore s, is a point on the locus.

Similarly, For ihe test point =) the net angle contribution ta all open loop poles
sl zeros are given by

'i'l..| + "I"_FE | ‘I"'P:L T "JE"M -+ "1-!_1': T '1.'-_'..!‘ e |:'1|_._|; + 'f]'.-.':':'
= 180° & 180° 4+ 1807 + 07 — 1807 + 0° - 0% + 07 = 3607 # 1807 (2 + 1)

I lwerefore &) s not a peint on the root locus. Thus the necessary condition for deter-
muning the real axis locus is

[riy — 1, ) 1807 = +(2q 4 1]180°

Where 7, is the number of poles en the real axis to the right of the test point and
us Lhe number of zeros on the real axis to the right of the test point. Eq- (3.25) satisfies
when iy — #, must be an odd number. If 2. — ny is an odd number then o, + 0.
alse an odd number, Therefore we can conclede that if the tolal number of poles and
seros to the right of the test point 2 on the real axis is odd then the test point lies on
the ront lecnus,

Fxample 3,13, Draw the root locus for the unity feedback system with open loop
transfer function
E{s+ 1Ws+ 3)

Gl = e oiis + 4

salulion .
I'he three rules so far we have seen are sufficient 1o draw the raot locus of the given
SySLCTL,

siep 1. The number of open loop poles are three. Therefore the number of branches
of the root locus are three. The plot of poles and zeros are shown in Fig, 3.25

Step 2. The three branches of the oot locus starts from the open loop poles 5 =
0, =2, —4. Out of these three branches two branches of the oot logus termi-
nate at the two open loop zeros and one branch terminates at infinity.

Step 3. Allthe points between Oand 1, -2 and —3, —d and —oc lie on the reot locus
far which the swm of open loop poles and zeros to the right of 1251 peints are
1.3 and 5 respectively (all points are having odd number of poles and zeros
to its right).
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Fig. 3.25

Bule 4:

The (n — ) rood focus Branches thit proceed to infimite do so alorg the asymptoles .
with aumrles

- (2g + L)180°

n =

Py g=0,1.2,......(R~m=1)

Consider a test point #; at infinity, the angles made by the line joining the test point s
and the open loop poles and zeros are equal 1o each other (say &7 ). The total number
of such angles is equal to nt — 1. Therelore the (otal angle made by the test point 2
with all open loop poles and zeros is equal to (n — m) @Y. This angle must satisfy the
angle criterion (1 — m)f = £180°(2q -+ 1)

[ — m)dYy = (2 + 1) IE0° (3.35)
b — (2q+ 1)180°
Py = m—' {3.36)

whereq=0,1,2,3...(r— 1~ 1), smce {# — me) branches of the root locus tends to
infimity along the asvmptotes, the number of asympiotes i1s equal to n — m. Therefore
g varies from0ton — e — 1

po h2g 4 131807

gy
i {n = m)
2q + 110"
ol = L2y 0198
e {nuimber of poles — number of zeros) g=hlL3. .. n—m-1
(3.38)

g=10,1,2.3..n=-m =1 (3.37)
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Step 3.

Step 4.

Step 5.

Step 6.

All the points berween 0 and —2, —3 and —4 lie on the root locus since the
sum of peles and zeros to the right of these points is odd (1 and 3 respectively).

The two root locus branches that proceed to infinity do so along the asymptotes
with angles

_ [2q + 1)180°

M4 p=10,1,2, . ...(p—m— 1}
»o—
4+ 111
= Q0©, 270°

The centroid, the paint of intersection of the asymptotes on the real axis is
given by

i Sum of real paris of poles — Sum of real parts of zeros
A= MNurnber of poles — Number of zeres

(=2 —3=4)—(=1) -8
a 3-1 -2

ey —f

d
The break away points of the root locus are the solution of dk =1

ds
] Efs+ 1)
Gl o) = e 3+ 4
b = _.{ar+ 2)(#x + Ex lv-4_}'
- s+ 1)
=& + Da” 4 26s + 24)
- (%4 1}
dk (5 1){3s® + 185 + 26) — (* + 947 + 265 + 24)
da (5 + 1)# '

(357 + 2152 & 4ds + 26) — (57 + 9% + 26x + 24) =0
250 125 4 185+ 2 =10
4Gt 405 1=0

The ragts are
—3.5321, 23473, 0. 120G

The soot —3.5321 alone Jies on the root locus, Hence the break away point
isat —3.5321.
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Rule-6

The breakaway points on which multiple roots of the characteristics equation occur of the root
locus are the solution of dk/ds =0

The complete root locus plot is shown in Fig. 3.27.

H T T T 1 T ] |

5 i i

4 . g
.E 2 : -
E‘ =35321 !
2 o R T T CTERREE
-E _1 _'I .ﬂ (a4
E- : -

-4 i -

i

—f : 1

_ﬂ_ i i :_jm i

-5 -2 -1 0 1 P

Real axis
Fig. 3.27

Rule T:
The angle of deparifure from an apan loop pole is given by
dp = £180°(2g + 1)+ ¢ g=10,1,2...

where @[5 et angle comribution fo this pele by all other open foop poles and zeros,
Simetlarly the angle of arrival af an open loop zero is given by

g, = 2180°(2g+ 1) — ¢y g=0,1,2......

where f is the net angle contribution to the zevo under consideration by all other apen
loop poles and zeros.
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Example 3,16,  Skeich the root locos for a system with open loop transfer function

k(s + 1)

Glalile) = 5T s
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Solution .
The open loop poles are at sy 2 = —2 < 73 and open loop zero is at a3 = —1. That i3
n=2im=1.

Step 1. There are two root locus branches since the system has two open loop poles.

Step 2. The two branches of the root locus starts at apen loop poles aft —2 4 35, One
branch terminales at open loop zero (Since it has only one zero) and the other
terminates af infinity when k = 20,

Step 3. All the points on the real axis betwesn —co and —1 are on the root locus
branch,

Step 4. The root locus branch that terminates at infinity do so along the asymptote
with angle
1)180°
g BIITM 0 i
11— 1
(2g + 1}180°
= 1807

=
Fig. 3.29

Step 5. The break away points of the root locus are the solution of # =}
s

~ [ +da + 13)

s+ 1
dk (a4 1025 +4) — (&* + 43 4+ 13)
ds (%4 1) =

.i.':

1]




Bizp 6.

(2&% 4 B + 4] — {3* + 45 4+ 13) =0
=l .EE+E'.‘I'—E|'=|]

The roots are al 47 = —d4.16 and 52 = 2.16.

The break away point is at —4.18 since this point is on the root locos but the
other root 2.16 is not on the reot locus.

The angle of departure frorm an open loop pole is given by
=180 (2 + 1)+ dsg=0,1,2
Forg=1
dp = £ 1B0% + &

where ¢ is the net angle contribution at this pole due to the other open loop
poles and zeros.

Let us consider the pole at —2 + 33,

The net angle contribution ¢ = @) — dapp = 105.43° — 90° = 18.43°.

The angle of department at pole p; is

dp = £180° + 18.43°
= 198.43°, 16157

The complete root locus plot is shown in Fig. 3.30.

[
a
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Rule 8:

The intersection of root locus with imaginary axis can be determined using the Routh

Rule 9:

The open loop gain k (Transfer function in pole-zere form) at any point so an the root
locus is given by

j [ l{s + pidl
[BRIERE
- Product of phasor lengths from s to open loop poles

k=
Produst of phasor lengths from s to open loop zeros

Example3.17.  Sketch the root locus of a feedback system whose open loop transfir
function is given by
k

Gis)H(s) = ale + 2)(s + 3)

Solution .
Using the rules discussed so far we can sketch the root locus. The open loop pales
are at 5 = 0, —2 and —3 and there is no open loop 22ros,

Step 1. The numbers of root locus branches are three since the number of open loop
poles are three, '

Step 2. The three branches of the root locus originate from the open loop poles at
g == {1, —2 and —3 when k = 0 and all the three branches terminate at infinity
when &k = &,

Step 3. All the points between 0 and —2, —3 and —oo lies on the root locus for which
the sum of open loop poles and zeros to the right of the test point are | and 3

respectively.
Step 4, The three root locus branches that proceed to infinity do so along the asymp-
totes with angles
2q 4+ 1)180°
da= 'IL'I'.;_..; g=01,2

B4 = 60°, 1507, 300°

Step 5. The centroid, the point of intersection of the asymptotes an the real axis is

given by
— Sum of real part of poles — Sum of real part of Zeros
A= Nurmber of poles — Mumbser of zeros
D—2-3=0 -3
= — =],
3 R bt
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Step 6. The break away points of the root locus are the solution uf% =1

k
s+ 208+ 3)

1+ G(s)H(s) =0

= (e} H(5) = <1

k

sls+2)a+d)
k= —sls+2)(s+8) = —[s* 452 + Ga)

dk

n = —[35" + 105 + 6] =0

Gle)H () =

1

The roots of *j—k = 0 are —2.5485 and —0.7847 The point 5 = —2.5485 is
not on the root locus. Therefore the breakaway point is —0.7847 which is on
the root locus.

Jm

3 r o
Lenorokl -"'nlﬂ:'n,_

" il
e L U

I." ==
@y, = - 07364 .
Coxttroid = 1667 [ -2
Fig. 3.3

Step 7. The intersection of the root locus with imaginary axis can be determined using
Fouth criterion. The characteristic equation is given by

1+ Gs1H{s) =0

k
sls+2)(s+3
sle+2Me+3)+ k=0

#+5" s+ k=0

0

14
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& 1 fi
2 5 k
| (30— &)/5 D
s k

(30 —k}5 =0
0= k< 30

g% = 4546

8 = £72.449,

ju

: ﬁ-/_ﬂ.ddli

- jm
Flg. 3.32

where 2 is the point at which the root locus crosses imaginary axis. The
complete root locus is shown in Fig, 3.32.

Example 3.18.  Sketch the root locus for a unity feedback system with open loop
transfer function
k

Gl = 852

Solation .
The poles of the open loop transfer function are the roots of the denominater
8(s® 4 Bu+32) =10
= Ppm

—B+./64— 4{32] -8B
ﬂ|3= 2 =S 2 =

Mark the poles with = symbel on the graph sheet.

—4 4 j4

Step 1. There are three open loop poles, hence the number of branches in the root
locus are three and o zeros.
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Step 2. The three branches starts at py = 0,pz = —4 + jd and py = —4 — jd when
k = (1 and terminate at infinity when & = o,

Step 3. All the points on the real axis between —oo to O lie on the root locus, since
there is one pole to the right of these points.

Step 4. The three branches that terminates at infinity do so along the asymptotes with

angles
r,!a-u=w g=0,12...[n=m—1]
=w g=10,1,2
For g =0 g = lﬂaﬂ"' = fF
For gm1 ¢-J11=3{I§ﬂﬂ}=lﬁﬂ"
For q=1 64 = 2ol = 300"

Step 5. The asymptotes meet al a point known as centroid

oo Sum of real parts of poles - Sum of real parts of zeros
A= MNumber of poles - Number of zeros
_=4-4-0_ 8

—— = =2 HET
3 3
jm
!J
Ml
rr
o
L P
R
;. 2
4
‘ - |
¥
a0’ 1
1| | I 1 ﬂ T (]
-4 —3’[‘—;.: =1 | 1 0
.' =
Cenroid -
L]
5 —..j
1
L]
k] -.. _—J'
k]
(4
l.'l.
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Mark the centroid on the real axis and draw the asymptotes with angles cal-
culated in step 4 using proteactaor.,

Step 6. The break away point of root locus are the solution of 45 = 0
[

Gs)H(8) = pri His)e=1
we kmow
1+ {a)H (%) =10
&
1 =
* M erima "
k= —s(s* + Ba 4+ 32)
ok
¥ E_ﬂ
= 3: + 16x4+32=10
memsm.'ﬂ.ﬁ-‘ﬂ_fﬁ

The points are mot on the root locus. Therefore there is no breakaway point.
Step 7. The angle of departure ¢, of a root locus from a complex open loop pole is
Gp = 180° 4 ¢

when ¢ is the net angle contribution at this pole by all other open loop poles
and Zero as shown in Fig. 3,34,

The angle of departure at pale pg is

Doy = 180° + &
where
@ = —135% — Q"
= — F25%
tan~! [{3) = 457
Ppe = 1B0° — 225° == —45" dpz = 180° — 45°% = 135°
Gy = OO

Similarly

l;ﬂ'F._.l = =i, = --I:r-t!.-'flﬂ} = 45"
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Using protractor mark the angle of deparare of complex pole

=
- 1
T — 4
: -\
" ‘I\.. — %
] -
' .
[} "'-_H_ e
. .
- ~_ b )
— =
: ., B = 133
. -3 —Ii —1 ™ : é =
' 1
' .
[ —— 2
'
= B = [ -
Hilin. UniR S I
" — 4

Fig. 3.3%

Step 8. The crossing point on the imaginary axis can be foand using Fowth criteriom.

The characieristic squation is given by

1 4 el {u) =
L=

I+t = xgaram

&5 4 Be® - 3Zs + =10
. ]3 sf g For stability
= 266 — &

aEE — b T::-ﬂandk::-ﬂ
s V¥ O

= == == & = 256
&9 &
When k& = 256, the root locus crosses the bmaginary axis. The auxiliary

equation is 8% p k= 0 = Ba® + 256 = 0. .5 = gwal

The complete root locus plot is shown in Fig. 3.35
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Frequency-response analysis&Bode Plot

4.4, POLAR PLOT - } .
The i i . i o) i £ the magnitude of G{jo) versus
lot of a sinuscidal transt. = function G{fo) is a plot of the :

pmgﬂ;;lpe M;U?n}mpdarmrdjnalaaﬁ ' is waried from zero to infinity. The polar plot, H?Ere*fﬂﬂ:
is the locus of vectors |G(jw)| _G(je) as e is varied from 2ero to infinity. Thus \ﬂ&hﬂll:]xprﬂﬁim ot e
hmumqrﬁpmwmﬁmﬂﬁmjmmmmmwm?htth:fﬁ:;mﬂ el

‘e’ miﬁfmmzerntﬁlnﬁnity.mpﬂhrpluﬁrhemagmtude ; ﬁtted__
Eﬁia:f?;:&emgmw}uh the phase angle s measured melimslt‘ﬁre real axis, Pﬂmuv;nm
angle te measured counter clockwise while mﬁvﬁp&ms:;rﬂilem rreasured clockwise

itive real axis. The polar plot is often called yrequuis )

o The advantage in using a polar plot that it depicts the frequency response ::haf-arthe:ftkf:
of a system over the entire frequency range ina single plot. The dmadumta%e is ’; il
plot does not indicate the contributions of each individ ual factor of the open loop ke

furction.

4.5. PROCEDURE TO SKETCH THE POLAR PLOT

Step 1: DE'I:E[']‘.l‘dE:IE the tranafer function G(3) of the system.

Step 2: Put S = join the transfer function to obtain Gijen)

Step3: Atw=0and o= calculate |G(jw)|. by Lim|G{ jus) and Lim Gl jo)|,

Step 4: Calculate the phase angle of Gijm) at m =”D_’nnd ) = ca
by Lim . G{ju) and Lim Gljw)

Step 5: Rationalize the function G{ju) and separate the real and imaginary parts.

Step 6: Equate the imaginary part I_ [G(ju)| to zero and determine the frequencies at which plot
intersects the real axis and caluculate the value Gljm) at the i

sects : point of intersection b

substituting the determined value of frequency in the expression of G{jum). .

Step 7: Equate the real part Re |G{ j)] to zero and determine the frequencies at which plots intersacts
the imaginary axis and calculate the value of C{fa) at the point of intersection by substituting

the determined value of frequency in the rationalized expression of G(fu
Step 8: Sketch the polar plot with the help of above informathon: o

L. TYFE "ZEROD' SYSTEM

K
GB) = A7)+ 575)
Step 1: Put 5 = jm
, [
Gl = T o) 1+ jaTy)
Gljes K £-tan” al, - tan™ &,

) =
V1+(@T, ) J1+ (T,
Sbep 2 : Taking the limit for the magnitude of G(jum).
Lim|Gljon| — Lin - ®
o —+{) ull'.l. + (T, G ‘II'| + (e} 32
Lim |G{jw)| _ Lim £
| P 0 = - u'l1+ft"i'ﬂ}2 Jl+{mT1]2
Step 3 : Taking the limit for the phase angle of G{ju)

=0
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Limt G{}'m} o Lt gap? mTl_m'l wl, =0

wm—sl L0 m—t[l i

Lim Gljw) = LMt , —tan™ o, —tan™" 0T, =-160°*

Al i -

Step 4 : Separating the real and imaginary parts of Clje)

K (1= jooTy ) {1 = jeaTs )
Glio) = {13 JeTy) {1+ juTy) (1- joky) (1- joT)
K{l- o*T|T;) . Ko (Ty +T5)
Glfe) = 1+ 07T + 0T +wiT Tt s @ T,2 + w T, + @ T T’
Equating the real part to zero.
K1l —m‘T.Tﬂ B
1+ szlz '|'l;|:|iT2E + m"T'I.TE -
1 1
= =g = $= & [} = & [
m1 T-LTE or o ]T1
1

The frequency at which plot intersects the Imaginary axis is ﬁ

For positive values of frequencies the polar plot intersects. the imaginary axis at @ ==
1
® = Tﬁ'.= and @wo
'!Tl
Value of Glja) when

o=
]TE

G[jtlf_l =ﬂ—_|| 1 o i " i a3

T +T'E'T T

nr; et 7P

T1+T KTI+T1
K
Fif o ATh KT
==]= I il _ {T +T}I T:I+T2
st 1 2
' 1+T‘I-."I T, TN

iGUm]{-K"'Ii and /GLjio) = - 90°

KJTiTy
- When W= :|l.1_= Glja) = m—
T '~-.[l}=w G[:;m}:ﬂ :—IH:I
StepE:qumﬁngﬂxei:mginqgrpartEnmm

1+ T + @'l +a'TT;



Equate the imaginary part equal to zero
KT, T, - K
m-!-mﬂ'{TlE + TIE -+ H}ITII.TEiJ

1 1
= = = :I|T=Et--ﬂ}=:|:m
'\ITITE ]Tz

1
The frequency at the point of intersection on real axis is —p===- Now calculate the value of

=1

112
Gjuw) at this point.
1
Put w0 = in equation (A}
]TE
: I G jeo)
Gljo) = - K 4 L8 -
{;erj = &5 M =
Step 5 : Equate the real part to zero
~wk{T, + T} _
3 2 2 2 -
w+o (T + T +e R
. f = o= K
For positive values of frequencies the Gl = S +ST,N1 +5T3)
polar plot intersects the imaginary axis at o
Glju) =0 »=270° " =18 » Re

Polar plot is shown in Fig, 4.2.

From the polar plot it ks clear that in type
one system the jo term in denominator
contributes —90° to the total phase angle. At
o = 0, the magnitude is infinity and phase
angle—90°. Al o= =, the magnitude becomes
zero and curve converges to origin. At low
frequency, the polar plot is asymptotic to a
line parallel to negative imaginary axis.

3. TYPE 'TWO" SYSTEM

K
Gl = Fa+amy

Puts '-‘.I:“:'
_ K ) K
G = GaF L+ joh) ~ —at J1+ (@)

- =180¢—tan™" wT;

. , Lim E -7
Lim [Gijo)| = ;55 T2 J1+ (T,
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i =0and m= +

When w =0 Gljml| =k _Gljw) =gr
0 =2 |etjm)=0 Gljwe) =0
I K
e Gis) -__.—[14-51‘[]{1 5T
lE K = -0
=18 = 0 = oof ) _q.{m i
T, / g
T, +T, el
Jr_- |
e
i =
;T’ k 0P
Fig. 4.1.
2 TYPE "ONE' SYSTEM
K
C6) = SrsTy AT sy
EtEP1= Fu‘l’ 3 -}‘m
i I 4
GO = T+ w1 + GoTy)
K
o = =90°—tan" oT; —tan~' wT,

» n;r,,l"l + (P J1+(0l;)
Step 2 : Taking the Henit for the magnitude of Gife)

Lim|Gljo)| = Lim K o
o= retll m‘fl-#{mTl]l 1"1 + (T3 ?)

om |GAF K
|:|-|-_| i | 0 — ﬂ]illll-F-{Eﬁ'T!}: 1.1']_'_{“‘?2}2

Step 3 : Taking the lienit for the phase angle of Gije)
ay LCU®) = L% ~90°—tan L oT; —tan” T, = - s0°

Lllﬁ'f :G{I—W} = Lim —W”—lﬂn—’ |'.'IITE| _tan—t_m:]-z = - 270°

i = i T B
5'—'9}""=53P-1Iaﬁngﬂ1&maland Lmagl‘na:].rpm
T K
Gl = T el (17 joTy)
Ml U4 20§, JKOMTT, — K)

4+
T 0+ (A R0l e (AT s T A)
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Equate the imaginary part equal to zero
Ea*T,T, - K
we+w (T + T + H}ITisziJ

=0

1 1
i = o = &=t e
1
ﬂmﬁquatﬂlepﬂintdint&ﬁ&cﬂﬂnunmaluiﬁisﬁ-NWmlculate&Eﬂ!uEﬂf
Gij) at this point.
1 :
Put @ = in equation (A4)
]TZ
. hLT G{ jon)
Glu) = -X iy ——=0
Gljw) = = @ =
Step 5: Equate the real part to zero

. H = o= K
For positive values of frequencies the Gl = s+ 5Ty
polar plot intersects the imaginary axis at w

Gljuw) =0 »=270%" =180*

Polar plot is shown in Fig. 4.2,

From the polar plot it is clear that in type
ore system the jo term in denominator
contributes — 80° to the total phase angle. At
o = 0, the magnitude is infinity and phase
mﬂf—ﬁ_ﬂ[ﬂ]:ﬂ,&[ﬂmﬂmﬂd&bﬂﬂmﬁ
zero and curve converges to origin. At low
frequency, the polar plot iz asymptlotic to a
line parallel to negative imaginary axis.

3. TYPE 'TWO SYSTEM

> Re

K
G(S}=S={1+ST1]
Put s = ji
K K -1
L = — = 18(F—tan™" wl;
0% = GaP (T4 jok) - —@? Jison) < ]

K
. . = Lim
.:IEE-?-E WG (jw)| = S0 - ? .qll'l + (00T, ¥
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Lim |G{jo)| = Lim = 5
i e u"1+(m'f,f

Lim  _180°—tan' aT, =-180°

=kl

g Glw) = Lim - _180°— tan™ T, =— 270F

0 b -
The presence of & in the denominator
contribubes a constant — 180° to the angle of
Gijea) for all frequencies,
The polar plot is a smoath curve whose M
angle decreases continuously from - 180°t ., &

£/l o2 plot is shown in figure. —
From the polar plot it is clear that at
w={), magnitude is infinity and phase angle
—180°, at i = = magnitude is zero and at low
frequencies the polar is asymptotic to a line
parallel to negative real axis, ' L=

BODE PLOT

4.10. BODE PLOT ’

Bode plot is a graphical representation of the transfer function for determining the stability of the
control systerm. Bode plot consists of two separate plots. One is a plot of the logarithm of the magnitude
of a sinusoidal transfer function, the other is a plot of the phase angle, both plots are plotted against
the frequency. The curves are drawn on semilog graph paper, using the log scale for frequency and
linear scale for magnitude (in decibles) or phase angle (in degrees). The magnitude is represented in
decibles. Thus, Bode plot consists of

(f} 20logy, | Gijw)l V., logo.
() Phase shift V, logm
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logp—

M=l

= B & B

M=3

SR

Case 3: Gis) =

Fut 8 = i
Gljug) = j

M = 20 logr, | Gljes) | = 20 bog,, e
AGlim) =+ 90F

The plot M ¥, logy, @ is a straight line having a slope of 4 22/ dec. il
+ 20 db/dec. and angular phase shift of + %0°. )/

+
: 1 o o 5
Case d: GCis) = T eT % g e
Mut g = (jo} a0
. 1 ()
Giju) = T+ jeT :
4 L+ i
|
|G} | = ——
i V14 w’T? 3 0 :
g — Lo i
: 1
20 logy, 1Gw | = 20log [— =
; ?lewtr| ®
—— Fig. 4.22.
L] Iﬂll}gm 1=20 ]":‘Ell:l 14‘sz1 .
= —200og;, ¥1+0iT? v log,1=0

Put the different values of o, we will get | Gju)| -:unsa-:!erfu]lnwmg W0 CA585.
(@) PorwT <=1 (very low frequencies)
~201og,, +1+0? T? = ~M0log, 41 =0
M= ﬂfﬂ-rm'l"::cclurmﬂ% _
(%) For @T =>1 (very high frequencies) ;

—logy V1+w T = —20log, va ’re

= - 20 log, o for @ == 1,/T

)



The main advantage of using Bode plot 15 hat multiplication of magnitudes can be converted
nto addition.
Consider open loop transfer function of a closed loop cantrol system
_ K1+ T, }{(1+5Ty )0
Gle) Hte) = M (14T ) (15T )
Put 5 = jtb
. . K(1+ jooT, ) (1+ joiTy ] oo
Gijw) H = -
(o) H ) = ey s ooy ) (14 Ty ) oo

2log,, 16 Hijo)| F(Eﬂll:-gﬁ+2l]'1ug'.|ll+ o1, + Wlog1+@' T |.v)

{lﬂﬂlﬂgmﬂﬂlug 1+ 0Ty +1Dmgﬁll+m11?]....}

Hence, in order to get 1G{ju) H (ju)| we will have to cbtain the individual plots and adding
individual components, the resultant can be obtained, Suppaose, His) = 1.

Case 1. The Gain K
Gls) =K
Fut 5 = fi
Gljw) =K
2og,, | Gljmyl = 2oy K 1)
Phascangled = G =00 (4D

From equations (4.1) and (4.2)itis clear that the magnitude

ishﬂepmiﬂlmflugmmand phase angle always zero. The plots :L T
are shown in Fig, (£.20). Wiogak
Case 2: Gls) = _lﬁ'_ i l‘
’ logy
i s = o’ @
1
G = +Hr"
ijllil}] {_iiﬂ:l}.]_"r" II
1 ?} i
30 log, | Gjm)| = 20Togy —wr .
(jio) g
= 20 hogyg (™ | logyp —
= ~20 N log;, () (h)
Fig- 4.20.

Gl < _gone

where W N =123 i
The plot M L’slﬂgmmisaah'a.lghtline.ﬁ:-rﬂﬂ thez line has uﬁl:}penfé—‘lﬂdb.-fdeﬂ.demdmgle
_of°. For N = 2, the slope ufﬂ-elimwﬂlbc—éﬂdbfdecadewmgkwillhe-lﬂﬂ“mdmm



Hence, M Vs log,, @ has two parts
(i) One part having M = 0 for @ << 1/T
i) In other part M varles as a straight line with slope of - 20 db/decade for o >>

W = —.:} is called break frequency or comer frequency

M =-20log,, o =-20({log,; @+ log;,T)
M = =20log, ©-20log,, T
= - 20 logyy @+ 20 log, 1/T

!

The above two parts of the graph intersect 0 db axis is determined by equating the eg® (4.3)

ko zero
0 = =20 log,, @ + 20 log, 1/T
m =1/T is called break frequency.
0 m=1T borgy i —
£
i Cormer
1 frequency 1/T I T I,
T £ ¢}
{db) Logut? | B R, -
-2 -20dby decade =
Fig. 4.23.
Case 5: Gls) = (1+ 5T)
Fut § = @
Gijw} = (1+ juaT)

| G}l = 14w *T"
20 logy, | Glja)| = 20logyy ¥1+0’T?

{1 When ol <<
M = 200og,, 1 = 0db

(i) When @l >>1
M =230 1'55-':“ T

i1}
1

Equate the above equation to zero
-y
0 uiﬂ]ﬂgmm-zﬂi!ﬂng

m = % corner frequency.

{4.3]
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1“'.#}; IR e | .a

Thus, the two parts of the graph intersects the ¥ db
i 1
axis at 0= . The second part is a straight line having the ~ +20 +20db/ decade
slope of + 20 db/ decade. t
Phase Angle Plot :EIIII:] ] -y £
4= Gljo) =tan T
{:}Atvﬂy]nﬁrfrfqumﬁmmTEﬂver}rvﬁ-}rmﬂu =307 (]
$ = tan! {0 =0°
(i) AtwT=1 -
# = tam1] = 45°
(it} At very high frequencies y o
¢ = tan? (o) = 90° %
Thus, the value of ¢ gradually changes from 0° to 90° 0
as o increases from 0 to very high values, i
Case 6 : General second order system E.‘sﬂ
z
LU
Gls) = 1
o s* 428w 5+ w2, &4 (k)
F'Ll.t g =ﬁu Fiil 41“&
w’y w,*
i = jo)t e 2w o)+ wF, | —0F + [ 2m 04w,
z
Gl = w, 1

 E - )
oy, — " + f2h0mn 0 o v AR
(o) e

0 logy, |Gla)| = 20log,,

z
i1} ! i
[
Suppose E:u
20 logy, 1GGjw)| = M=-30log,, u'{l—u P4 4thd
Consider the two cases

. [
L8 —
1. w==1 o, < 1

M = -20logy, 1 =0db.

' L1} A
2 us»]lhe=—1un] 5
ml‘l

M = ~20log, (12 ) == 20 logy, #* = - 40 log,, u
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So, it is a straight line having slope of ~ 40 db/dec. and passing through the point u.

Therefore, the asymptotic plot consists of

(i} M=0 neel 20
(i) M =—401ag,,u T T
T ﬂﬁlum —+
= G(jt) = —tan™ _26u 5
¢ = LU 1-u = 40 disdec.
{f) For small value of u, 1 is small =20
=~ tan™' 25u i)
(i) For large value of u, #* >> 1 -
h = +tan™ -25-
() When i =1 |
# = lan_‘ -|'.1l:|-=—'m:|':l 'E
nitial Slope of Bode Plot P 2 o g 0 —
K
Let Gis) His) = v —45= 1
Ful 5 =J|:[I}
. o | "
Gljon) Hijio) = [ Fig. 4.25.
20 log,, | Gijw) Hijw) | = 20log,, H , K}N = 20 logy, K—20 N logyym 44)
jur
1. For N=0 {Type zero system)
20 log, | Gijen) H (jeo} | = 20 log, , K.
This is a straight line. The graph is shown in Fig, 4.26.
2. Bor N =1’ {type one system)
Put N =1 in equation (4.4)
2logyg 1 Gljo) H (ju) | = 20 logy, K — 20 log, 0 o
Intersection with 0 db axis +
1] =iﬂ|ﬂgmfi—1ﬂ1ugmm Midb) a0 20 log,, K
_ K=w
locate @ = K o 0 db axis and at this point draw a line 0 l
of = 20 db/decade produce it till it intersect the y-axis Fig. 4.28. kgt —

that will be the starting point on Bode plot.
3. For N =2 (type two system)
Put N = 2 in equation {14)

20 logy 1Glje) Hijen)| =20 logy K - 20. 2 logyy o
= 20 logyy K - 40 logy, @

Intersection with 0 db axia

0 = 20 logyy K — 40 log,, o
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20 logy, K = 40 log;, o
20 bogyy K = 20 log,, o
w =K

w=JE

Hence, graph intersect the 0 db axds at o= f§ . Locate o= /& on 0 db axis and draw a line =40
db/dec, and produce it to the y-axis. Graph having the slope of - 40 db /decade is shown in Fig, 4.27.

40 db,/ dec.
? oy st T
= =
& o = ."_"'
| i s
lgpu— oK =K logym—
Fig. 4.27. ,
1 k
: Table 4.3. |
__Type of the - Initial Slope |7 Intesection with
System'N - 0db Axis i 1
e 0 db/decade Parallel to 0 axis
1 =20 db/dec. L m K |
2 =40 db/dec. = JK
3 —60db/dec. =K1
i i -: :
N ~20M db/dec. KM
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4.12. PROCEDURE FOR DRAWING THE BODE PLOTS
Consider the transfer functon

El+sT {145 ) veennn
Ge) = % (1+5T, ) {1+35T;) _ A7)
- o). (e
SNl sT) (14sTy) o [1+2§[mﬂ]+[;m"]] |
where N i the number of poles at the origin £¢. N defines the type of system.
For type zero system K = K, .
For type one system K = K
For type two systern K = K|
In above transfer function put s =
i K(1+JOT,) (14 jeT,)..... i

" (o) (14 joT; ) (14 joT,).....[1+ 2t {aym, )+ (o/o0,)?]
20 logy, | Gljm) | = 20log K + 201og 1+ 0T, + 20log 14+ 0°T,% +....—20NTog o

L]

: — -
~20log J1+0°T;® - 20log 1+ 07T, —2010g J[1-[£‘L] ] +4E_F[E] f1.9)

Phase angle

; 20
£G(jm) = tan™ 0T, +tan~wTy, + ... N(907) - tan T, - tan T, .... tan! [ﬁz—] --(4.10)

Step 1:
Step 2

Step 3

EEP‘:

Step 5:

i1}

Draw the asyimpbotic magnitude plot, The slope will change at each corner frequancy by
+ 20 db / dec. for zero and - 20 db'/ dec for pole. For complex conjugate pole and zero the
slope will change by 5 40 db/ decadle,

i} For type zero system draw a line upto first (lowest) comer frequency having O db dec.

{if} For type one system draw a line having slope = 20 db/ dec. upto @ = K. Mark first
(lowest) corner frequency.
(i) For type two system draw the line having slope — 40 db/ dec. upto w=,/K and s00n,
Mark first comer frequency.
Drraw a line upto second corner frequency by adding the slope of next pole or zero B the
previous shope and so on,
Calculate phase angle for different values of @ from the equation (4.10) and join all points,

101



4.13, PHASE MARGIN & GAIN MARGIN

T £ Galn croasover i
151 i e L
db g * ' I_P-:-ﬁﬁ-.--:ﬁ.m. Idil 0
& : 1, i’
1 ]
1 1
1 L]
. L Fhase 3
T :1 1 croasover T
Positive ¥ =1
phase margin
Erequendcy argin
fa) Siable ayslem il Llnshoble syshemr
Fig. 4.28.

Positive gain margin means the system is stable and negative gain margin means the systerm is
unstable, For minimum phase system both phase margin and gain margin must be positive for the
systerm tor be stable.

The point at which the magnitude curve erosses the 0 db line is the gain coossover frequency.
The phase crossover frequency is the point where the phase cunre crosses the 160° line.

CGain Margin : Gain margin is defined as the margin in gain allowable by which gain can be
increased til system reaches on the verge of instability, Mathematically gain margin is defined
ag the reciprocal of the magnitude of the Gijoy H{fw) at phase cross over frequency.

1
CM = TG Hi0lym

where W = phase crossover frequency.
Generally, G.M. is expressad in decibals

1
- Indecibels GM. = 20 log 1G{ jeo) H{ jm)l
=,

. or G.M, = =20 log,, 1G{ fuw) H{j‘[l]ﬂu:wn!

Phase Margin : For gain the additional phase lag can be introduced without affecting the
magnitude plot, Therefore, phase margin can be defined as the amount of additional phace lag
which can be introduced in the system till system reaches on the verge of instability is called as
phase margin (P.M.). Mathematically phase margin can be defined as

PM. = [.—:G{;'mu Hejol, ., |-(-180°)
PM. = 1800 + A0 fu) HU“’]IL

where .. = Gain crossover frequency.
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5.15. NYQUIST CRITERION

The characteristic equation is given by
Dis) =1+ Gls) His) 524)

The zeros of D{s) are the roots of the characteristic equation, For a feedback system the necessary
and sufficient condition is that all zercs of 1 + G(s) H(s) that is the roots of the characteristic equation
must have negative real part i.c., they must lie in the left half of s-plane. In order to determine the
presence of zeros in right half of s-plane we choose a contour as shown in Fig. 5.38 called Nyquist
contour. Let there are ‘2 zeros and ‘P poles in the right half of s-plane . If this contour is mapped in
Dis) plane as 1];.' then T, enclosesthe origin N times (where N = Z-F) in clockwise. Hence the system
is unstable because the dockwise encirclement is possible only when there are zeros of I} in right
half of s-plane.

A feedback system (close loop system) is stable if and only if there is no zeros of D{s) in the right
half of s-plane, ie. £=0

N=-P
Therefore, for a closed loop system to be stable, the number of counter clockwise encirclement

of the origin of D{s) plane by I, should equal the number v
of right half s-plane poles of D(s) which are the poles of T Digl-plane
open loop transfer function Gis) H(s). .
Since Dis) =1 + Gis) His) ! = Ppmcantous
or Gis) Hig) = INg) -1 | —=3U

The contour F in D{s) plane can be mapped in G(s) K:*r-.,h -

Hs) plane. T, by shifting horizontally t the left by one Ty =contour .
unit. Thus the encirclement of the origin by the contour Ty Fig. 5.41.
is equivalent to the encirclement of the point (-14j0) by the contour I as shown in Fig.5.39,

In most single loop feedback system G(s) His) has no poles in the right half plane Le, £ = 0 then
closed loop system is stable if N =P =10.

%o, we can say that A closed loop system with P'= 0 is stable if the net encirclement of the arigin
of Dis) plane by I, contour is zero,

Now, we can state the Nyquist stability criterion as follows:

A feedback system or closed loop system is atable if the contour [, of the apen loop
transfer function G(s) H(s) corresponding to the Nyquist contour in the g-plane encircles the
point (-1 + j0) in counterclockwise direction and the number of counterclockwise
encirclements about the (=1 + j0) equals the number of poles of G{s) H{s) in the right half of
s-plane ie., with positive real parts. ,

In common case of open loop stable system, the closed loop system is stable if the contour
oy of G(5) His) does not pass theough or does not encircle (-1 + jll) point, .., net encirclement
15 Zera.
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5.16. GENERAL CONSTRULTION RULES OF THE NYQUNST PATH
Consider the Fig. 5.37 :

L mwe mEem e o Tﬂblt E;IL S—— —
Path ab _ 5= i Dowpaion i )
Path be 5= Lim (juo, +Pel™) 90° £ 0 S WP {5.26)
Fath cd 8= i [ A 4527
Path def s= Lim Re” . S seswr A5.28)
Path fg 5 =j : Smeme—, 529 |
| Pathgh s=Hm e +Pe) . orceser {5.30) l
| Path ki 5= fo kS mED w531 |
! i |
| Pathija 5= Lim Pr - 9F < B < 90° .45.32) |

Step 1 : Check Gis) for poles on jo axis and at the origin.

Step 2 : Using equation (5.25) to equation (3.27) sketch the image of the path g = 4 in the G{s)-plane.
If there are no poles on fio axis equation (5.26) need not be emploved.

Step 3: Draw the mirror image about the real axiz of the sketch resulting from
step 2.

Step 4 : Use equation (5.28) plot the image of path def. This path at infinity usually plot into a péint
in the G{s) -plane.

Step 5 : Use equation (5.32) plot the image of path ijiz (pole at origin)

Step 6 : Connect all curves drawn into the previous steps.

CHUANRBLEE T4, Determine the closed loop stability of a control system whose open loop

transfer function is :

K !
Gis) His) = g 54Ty (Type "1’ systern)
Solution : Given that

K
Gls} His) = greary

Put § = ji
: K
Gijes) Hijeo) = To(+ jaT) -45.33)
Rationalizing the equation (5.33) and separating into real and imaginary parts,
] KT K
] S = 14+@iTe = m-[1+mfl"}} ~134)

Lim 1G{jan) H{jo)l w o
Lim ,G(jw)H{jo) - _gp
H."i IG(fw)H(fw)l _ g

Lim , Gljm)H{jw) _ _ 100
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'.]'“
m B s-plane i3 Gl#)H(s)-plane
| .)}\r h o\ .

Fig. 5.42. Myguist plot
The polar plot will lie in third quadrant.

i ia ghown in Fig. 5.42. The part for 0 < o < + == is drawn (1) (2) and for —== <@
<0 E;ﬁmuiaﬂy E;Ii‘;t;riﬂ i2) (3) Erlwh is Hq;pmiq?r image of (1}, (). The gnﬁ-:i:m]&ar detour
around the origin in s-plane is mapped into a semicircular path of infinite radius representing a
change of phase from + &/ to -1t/2.

As the point (-1 + jo) is not encircled by the plot, N =10
N=D P=0
N =EZ-P s EZ=0 :
The number of zeros or roots of the characteristic equation with positive real part is nil and
hence the closed loop system is skable.
EXAMPLE 5.45. Sketch the Nyquist plot and determine the stability of a unity feedback control
gystem.

K
Gls) = {3 T )1+ 5Ty) (Type O sysiem)
Solubion : Given that :

K
Gle) His) = [TaT) (14515

Put 5 =ja
K
Giju) Hiju) = {140l |:1_|_Jim-]-'='j voel 3. 33)
K
| Gijo) Hja)| = -.I|1+IJ12T=1 1|'.]_+m1-1—22 5.36)
LGlje)H(jo) = - tan™! T, - ™ @l -A5.37)

Eﬁlﬁ[i{mﬂﬁmﬂ =K
Lim Gl jw)H{jo) = p
.ﬂ"— |G} H{jw)l = g

Lim AG(jm)H{jio) = _ 15p°

4
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Rationalize the equation {5.35) and separate the real and imaginary parts.

4 K(1-w’T,T) e +T)
[T (1 Ts) ~ (v olf) 1+ 0'T) ! (TvalT) (L4aTEy) -2
Equate the real part to zero, we get
iy
°T
Glim)H(Y  ,  KTT
T"rn -"!'-ll'ﬁIl
i 5 /'"'""'\_\
\ (17
% . T -'.""i'.
4 Lo S
i |
..... SR b AN T ety
i <180F | i o
, (f—x—A
3 K ]’i’]’i I | 5
i Ak | I"“,.--’
i "." T!+T! r._.-..

The plot of Gija} Hijew) is shown in Fig, 5,43, The infinite semicircular arc of the Nyquist contour
maps into origin, As'the point (-1 + jo) is not encircled by the plot

; N=0

P=0

Z =0

Hence, the system is stable,
CRAMPLE G468, Using Nyquist criterion, determine the stability of the faedback system which
has the following open loop transfer function,

K
Gls) His) = Sll+sT) (Type “2" system)
Solution : Given that
K
Gle HE) = T
Put 5 = O
Sihver K
Gljw) Hiju) = W -(5.39)
Ratipnalizing the equation (5.39) and separating the real and imaginary part .
et K b X
Glje) Hiju) = o (1+atr) of1+a'T) . )

The Nyquist diagram is shown in the Fig, (542). Because of the double pole at 5 = 0, a small
semicircular detour at the origin should be made, '
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— w e S ) |
Fig. D84,
The point (- 1 + ji} is encircled twice. Henca N =2
F=0
Z=2

HE!.I:'I'I.'-'E the system is unstable.
EXAMPLE 5.47. Use Nyquist criterion, determine whether the closed loop a-_r,-atemhmri.ngme
following open loop transfer function is stable or not.

1
Gis) Hls) = {121 (145
Solution ; Given that

1
Gis) His) = e ie)(i+s)

Puts = jo
L 541
Gljo) Hije) = Joi1+ fZw) (1+ jo) ~42.41)
- o
—-3 Rz . 1+.Ii:| .-IH =T
-:.l--'llsll.?ﬂ?'
Fig. 5.45, .
Rationalizing the equation (5.41) and separate the real and imaginary part.
-3 iy 1-20® o)
Glja) Hije) = 3 Safy(1+07) * ofl+4e®)(1+0°) =
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CHAPTER-9

STATAE VARIABLE ANALYSIS

8.1, ANNYSIE OF BYBTEMS  eisissainnimiisessesosiviaassaiinit
The procedure for determining the state of a system is called state variable analysis. The state of &
dynamic system is the smallest set of variables such that the knowledge of these variables at ¢ = ¢,
with the knowledge of the input for ¢ 2 ¢, complately determines the behaviour of the system for any
time ¢ 2 £, This set of variables is called state variables,

In earlier chapters we studied the linear system by transfer function, block diagram ete, The
transfer function has some drawbacks eg. transfer function is only defined under zero initial
conditions and also it s applicable to linear time invariant systems. " Therefore due to these Limitation
state variable approach is developed. This technique can bé used for analysis and design of linear
and non-linear, time invariant or time variant and multi input multi-output systems."* The state
space analysis involves the description of the system in terms of [ order differential equations by
selecting suitable state variables, the first order derivatives are arranged on left hand side and on /
tight hand side the terms are free from derivatives. The state space techniques have many advantages
(Given in next article £.¢, .2).

R O S SO S ——

8.2, ADVANTAGES OF STATE SPACE TEEHHI'III..IEE
This technique has the following advantages, .

* If the characteristic of a system does not change with fime, then the system is said to be time invariant.

™ f systern is said to be a single variable systern if and ondy If it has only one input tereinal and only ome
output terminal. A system is said to be multivariable system if and only if it has mare than one input terminal
or more than one output terminal. :

e i i Ul e 3 s o S
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. This approach can be applied to linear or nonlinear, time variant or time invariant systems.

. It is easier to apply where the Laplace transform cannot be applied

3. n® order differential equations can be expressed as ‘i’ equation of first order whose solutions
are easiet.

4. Tt is a time domain approach.

5. This method is suitable for digital cmnpute*r l'_'EII:I'IFI.Il:EI.tI-DIl because this is a time domain
approach.

6. The systen can be designed for optimal conditions mmtugvmwﬁnmmmm

Pl i

8.3, SOME IMPIJHTMIIT IJEFIHI'I'II:IHE

State : The state of a system at any me “t; Is the m!mmum .'!El-l:l-f nLhmI:lera :rl,xi. Ty whrr_h along
with the input to the system for time £ z ¢ is sufficient to determine the behaviour of the system for
all 2 k. In other words, the state of a system represents the minimum amount of information that
we need to know about a system at “t,"” such that its future behaviour can be determined without
reference to the input before f;'. The state can also be defined as the state of a system at time £ is the
amount of information at #, that, together with input w(f, =) determines the unique behaviour of
the system forall ¢ 2 ¢, By the behaviour of the system, we mean all responses, including the state of
the system. If the system is a netwark we mean the voltage and current of every branch of the
network.

Consider the network shown in Fig. 8.1 if the initial current A e TET

the inductor and initial voltage across the capacitor are * L T .
knwowny, theen for any driving voltage the behaviour of the netwrok JE:{'JE' C==
can be determined. Henee, the inductor current and capacitor i
voltage can be considered as the state of the network. JL

State Variables : The definition is given in Article 8.1 Fig. 8.1.

State Vector : If we need 1 variables to completely describe
the behaviour of a given system, then these n state variables may be considered as n component of
a vector x. Such a vector is called state vector, A state vector is thus a vector which determines
uniquely the system state x(f) for any time £ 2 £, once the stake at ¢ = £, is given and the input u(f) for
f 2 &, is specified.

E'tate space : The n-dimensional space whose coordinate axes consists of the x; axis, x; axis ...
. axis 15 called state space. Any state can be represented by a paint in the state space.

8.4. STATE SPACE REPRESENTATION

B.4.1. State Space Representation For Electrical Network (Physical Variable Form]
Consider an RELC network shown in Fig. 8.2, Let, the current at time ! = 0 be (0] -umlc'sp-amtur

vnlhgcarhmn:t =0 be V_ (D). Thus, the state of the network at time ST
# = 0 is specified by the inductor current and capacitor voltage. L =i T-
Henice, the pair i; (0}, V, (0} is called the initial state of the network. K = T
Similarly at time f’, HﬁEpaJIi,_I[ﬂl V_(f) is called the state of the L
network at ‘t'. The variable {; and V, are called state variables of
the natwork. Fig. B.2.
Apply KVL
Ri 4L Ly ) B

dt
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Also, i=i = E‘W‘f _ -{8.2)

¢ dt

di R. 1
Fromequation (1) - =-Th -7V - AR
do, 1, 4y
@~ Th A5 4)

Equations of this form are called state equations. In surh equations all the variables present are
state variables,

Equations (8.3} and (84) can be written in matrix form as

aty R _1ry
df L L
ria C Ye
let x(E) ﬁ .a.ndﬂ = |:
then equation (8.5) can be writhen as
d
r -'iEI.'I = A xlf)
or () = A xif)
In the linear time-invariant systems, the general form of state equations are
x(t) = A =) + B ulf) --(8.6)
y(t) = Cxlf) + D () .(87)

These equations are vector differential equations where “x* is the r-dimensional state vector
y = n-dimensional oukput vector -
1 = r-dimensional control vector or input vector
A = n = n system matrix
B = n x r control matrix
C = n x 1 output matrix
In some cases there 15 no direct connection between Input and cutput so I #(f) will not be there.

wit} = Cxlf) ~{5.8)
Equahmu{ﬂﬁ}ﬁﬂdfﬂﬁjcanheexpresseda&
il [ g e wllam) o g™
o By gy e az || 22 31 by By, iy
-_;_3 = + n-l:ﬂ!-gl:'
b B
:E. "I_ul_l 'T.-m-_ -::_*- nl Ar _Hﬂ
|8 ] .
HJ-J [Cyp Ciz oo Gy _II.
F.t = .1:2 A B 100
yu Cn'l'l ----------- Em IH.
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B.4.2. State Space Representation of sth Order Differential Equations
Consider the following examples.

() For nth Order Differential Equation
EXAMPLE 8.1. A system is described by the differential equation

Ay _d d

E'%J' d—§+11 !"+my B uit) _
where y is the output and » is the input to the system. Obtain stabe space representation of the
system. ; (R.M.L., Unfversity, Faizabad, 2003)

Solution : Select the state variables as . j
X =y x=Yandx;= ¥ then
1"1 = %y
gy
Ly mBal) =102 -11x, -
The last equation is obtained from the given equation.

e [0 1 0]|*\ 0

wl=| 00 1 [|%2|+|0fuif) 811}

w| 10 -11 -6|x] |8

Compare equation (8.11) with equation (B.6) we get

fo0 1 n' 0 S
A=lpg o 1| B=|o]xdt)=|x
<10 -11 -] 8 x5

(k) State Space Representation of # Order Linear System with r Forcing Function

Consider the following example
EXAMPLE B.2. A system is described by the following differential equation. Represent the
system in stabe space.

3 2
2 +3§?':~ + 4% = )+ ) + S D)

ar?
and putputs are
' dx
Wy = j— -Fﬂ' + 3y
2y
y’z £ -EE_—'I‘ + ";:II: +|l_,
Solution : Select the stabe variables as
: .1'1 =Y
1 =) .I' =X,
Ty =1y

£ = 1 oF) -+ uglth + duglF) = By — dxy —dy
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=0 0 1|/ x|e[00 0fln

_'IE:5 _* —4 -3 1'3 1 3 4 H=a
Onrtpuats ;

¥y =4y + 3uy

¥y uiﬂzl_'_aﬂﬂﬂl
v | =lo o 1™ Mo ¢ 1f|*
. X3 “

3

A.4.3. State Space RAepresentation for Tranﬂ'ﬁ!l‘ Function

Consider the following example
EXAMPLE 8.3. For the given transfer fun.ul:l:l.n-n... obtain the state model.
wrial K
Clel =iy = F + g8 + @+,

Solution : This transfer functien has no 2eroes,
(87 + 25" + @5 + ay) wis) = Kuis)

or SPyls) + a5 ty(s) + ay8 yls) + agw(s) = Ku(s)
Taking inverse Laplace
V) way i () +ay gty +ay it} = Kulf)
or ¥ty = Kulf) —ay ¥{H) -y ¥ —amn
Select the state variables as, first stabe variable as output
]:"“} =Xy
¥ =% =x,
F =t mx,
Y5 =%
'l (£) = —ay x5 = Ayxy — agxy + Kae(t)
Rewriﬂ.ng the equations
I-| = _1;:2
Xy =2,

Ey =y xa—a;.xz-- a,x, + Kuil)

, & o 1 0]f=] [o
: Sl=l o o 1 ||x]|+| 0w
.'-|:'3_J L_F"I —@dx —iy Iy K

wit) = [1-0 0] =y (£}

BLOCK DIAGEAM :
The block diagram of the given transfer function is shown in Fig. 8.5

E
L - % '
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Mew consider another case when the transfer function has zeros.
=t

IE:I],..

o
il

: Fig. 8.3.
EXAMPLE 8.4. Oblain the state model for the given transfer function.

KT C.
o0 = ) o o KEGC

8 4 @yst 4 a8+,
Solution : Break the transfer function in two parts

F{E} .Tll::-S} yf,s} K
wis) - uls) z (5 " P+ e (Cas+C4)
; (s} K
Blow consider sy 53"'”352'*#1“'11.
[# + a5 + a5 + ay] x,(5) = Ku(s)
Taking inverse Laplace ]

;1 F) 43 x00) +ay "E"Lm + iy 1y (H) = Kuif)
X (f) = a-.na_i".:(ﬂ =% () = a3, x, 08} + Kult)
Select the slate variables as
. &
iy=x
.#] = .#.3
Rewrite i omx,
g =¥y

=
I n

Ty W=y Xy =y Xy = % + Ku

i 0 1 0 ]fx] [0
Tal=| 0 0O 1 |fxs f+| 0 fud)
:Eg —dy —dy —dy || T3 K
w(s)

Conslder, (5 =C:_.s+t.'_.j!
wiE) = x,(8) [Cy s+ O]

Take inverse Laplace

wiE) = Cox; + Coxy
Wit =[C, C, 0] x(#)
=IC, G 01y
Xz

Xy
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8.5. SOLUTION OF THE TIME-INVARIANT STATE EQUATION

8.5.1. Solution of Homogeneous State Equation : Laplace Transform Method
Wi knowr that

x(f) = Ax(#) + Bult) _ -(8.12)
uif) = 0 for unforced response :
Then x(t) = Ax(f) e ~{8.13)
Let us consider the analogous scalar equation

(B = ax(f) (B.14)

Take the Laplace transform of equation (8.14)
sX(s) = 2{ll) = aXis)
(s —a) Xis) = x(0) :
or Xis) = (s —a) #{0) ' .(8.15)

Take the inverse laplace of equation {8.15)
x(t) =™ x(0) w(B.16)
If equation (3.16) is the solution of equation (B.14) then the solution of equation (8.13)
x(f) = A xi0)
&M = ¢(f) = State Transition Matrix (STM)
2,2 33 L
=I+At+%+ﬂa—f_+....=_£u-ﬁ AB17)

olf) = £g4s) = £ - AP
where i) = Resolvant matrix

B.5.2. Properties of State Transition Matrices

For time invariant system ¥ = Ax and

1,7 Al
Pit) =H'=I+ﬂt+ﬁz—i+%+ .....

Oy =eAM ]
(i o) = e = (U = (-1

LA N e e i, W R
T e 1 f_-}f""h.:;’ m T gy —yrto—
.}' i : .

=i (7] = TPUE Froa
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